Skip to main content

Mera TVM: An End to End Tensor IR/DSL Stack for Deep Learning Systems, adapted to Mera (https://github.com/Edgecortix-Inc/mera) environment.

Project description

The author of this package has not provided a project description

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mera_tvm_runtime-1.3.1-cp38-cp38-manylinux_2_27_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ x86-64

mera_tvm_runtime-1.3.1-cp36-cp36m-manylinux_2_27_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.27+ x86-64

File details

Details for the file mera_tvm_runtime-1.3.1-cp38-cp38-manylinux_2_27_x86_64.whl.

File metadata

  • Download URL: mera_tvm_runtime-1.3.1-cp38-cp38-manylinux_2_27_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.27+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/37.3 requests/2.28.2 requests-toolbelt/0.10.1 urllib3/1.26.14 tqdm/4.64.1 importlib-metadata/6.0.0 keyring/23.13.1 rfc3986/2.0.0 colorama/0.4.6 CPython/3.8.5

File hashes

Hashes for mera_tvm_runtime-1.3.1-cp38-cp38-manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 8b8fe0f6bedbeec760b72d7d1d582aa15f962abff75c194c0ae994c31aa8658f
MD5 8fe568a8ed6a840a522515b8eada00cf
BLAKE2b-256 b547dbab9f21f024421c7557fe6fea1ed2daed8705434666c4058aba31cd55ec

See more details on using hashes here.

File details

Details for the file mera_tvm_runtime-1.3.1-cp36-cp36m-manylinux_2_27_x86_64.whl.

File metadata

  • Download URL: mera_tvm_runtime-1.3.1-cp36-cp36m-manylinux_2_27_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.27+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/37.3 requests/2.28.2 requests-toolbelt/0.10.1 urllib3/1.26.14 tqdm/4.64.1 importlib-metadata/6.0.0 keyring/23.13.1 rfc3986/2.0.0 colorama/0.4.6 CPython/3.8.5

File hashes

Hashes for mera_tvm_runtime-1.3.1-cp36-cp36m-manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 a5214eb023030c808a3c511fb5389340fedd593cee45135ba19909cb50b05cc1
MD5 ddb0a68393d4a810e86db8b534ed2c79
BLAKE2b-256 d0ed1c25e3f1fd9f5b03f6f02bc04d34b8cd40cadf274021c8a1c5a757168cd6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page