Skip to main content

Mixed Effects Random Forest

Project description

Mixed Effects Random Forest

This repository contains a pure Python implementation of a mixed effects random forest (MERF) algorithm. It can be used, out of the box, to fit a MERF model and predict with it.

MERF Model

The MERF model is:

y_i = f(X_i) + Z_i * b_i + e_i

b_i ~ N(0, D)

e_i ~ N(0, R_i)

for each cluster i out of n total clusters.

In the above:

  • y_i -- the (n_i x 1) vector of responses for cluster i. These are given at at training.
  • X_i -- the (n_i x p) fixed effects covariates that are associated with the y_i. These are given at training.
  • Z_i -- the (n_i x q) random effects covariates that are associated with the y_i. These are given at training.
  • e_i -- the (n_i x 1) vector of errors for cluster i. This is unknown.
  • i is the cluster_id. This is given at training.

The learned parameters in MERF are:

  • f() -- which is a random forest that models the, potentially nonlinear, mapping from the fixed effect covariates to the response. It is common across all clusters.
  • D -- which is the covariance of the normal distribution from which each of the b_i are drawn. It is common across all clusters.
  • sigma^2 -- which is the variance of e_i, which is assumed to be white. It is common across all clusters.

Note that one key assumption of the MERF model is that the random effect is linear. Though, this is limiting in some regards, it is still broadly useful for many problems. It is better than not modelling the random effect at all.

The algorithms implemented in this repo were developed by Ahlem Hajjem, Francois Bellavance, and Denis Larocque and published in a paper here. Many thanks to Ahlem and Denis for providing an R reference and aiding in the debugging of this code. Quick note, the published paper has a small typo in the update equation for sigma^2 which is corrected in the source code here.

Using the Code

The MERF code is modelled after scikit-learn estimators. To use, you instantiate a MERF object. As of 1.0, you can pass any non-linear estimator for the fixed effect. By default this is a scikit-learn random forest, but you can pass any model you wish that conforms to the scikit-learn estimator API, e.g. LightGBM, XGBoost, a properly wrapped PyTorch neural net,

Then you fit the model using training data. As of 1.0, you can also pass a validation set to see the validation performance on it. This is meant to feel similar to PyTorch where you can view the validation loss after each epoch of training. After fitting you can predict responses from data, either from known (cluster in training set) or new (cluster not in training set) clusters.

For example:

> from merf import MERF
> merf = MERF()
> merf.fit(X_train, Z_train, clusters_train, y_train)
> y_hat = merf.predict(X_test, Z_test, clusters_test)

Alternatively:

> from lightgbm import LGBMRegressor
> lgbm = LGBMRegressor()
> mrf_lgbm = MERF(lgbm, max_iterations=15)
> mrf_lgbm.fit(X_train, Z_train, clusters_train, y_train, X_val, Z_val, clusters_val, y_val)
> y_hat = merf.predict(X_test, Z_test, clusters_test)

Note that training is slow because the underlying expectation-maximization (EM) algorithm requires many calls to the non-linear fixed effects model, e.g. random forest. That being said, this implemtataion has early stopping which aborts the EM algorithm if the generalized log-likelihood (GLL) stops significantly improving.

Tour of the Source Code

The \merf directory contains all the source code:

  • merf.py is the key module that contains the MERF class. It is imported at the package level.
  • merf_test.py contain some simple unit tests.
  • utils.py contains a class for generating synthetic data that can be used to test the accuracy of MERF. The process implemented is the same as that in this paper.
  • viz.py contains a plotting function that takes in a trained MERF object and plots various metrics of interest.

The \notebooks directory contains some useful notebooks that show you how to use the code and evaluate MERF performance. Most of the techniques implemented are the same as those in this paper.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

merf-1.0.tar.gz (13.9 kB view details)

Uploaded Source

Built Distribution

merf-1.0-py3-none-any.whl (14.1 kB view details)

Uploaded Python 3

File details

Details for the file merf-1.0.tar.gz.

File metadata

  • Download URL: merf-1.0.tar.gz
  • Upload date:
  • Size: 13.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.5

File hashes

Hashes for merf-1.0.tar.gz
Algorithm Hash digest
SHA256 40515c519e904b610ea62cc19f5d716d216389a707dbc0eb2f51dbfcfa5ced1e
MD5 d5f080a2b9009c67b88e7587fc324905
BLAKE2b-256 3245ec35345348763b9d2fad68614097024ad17622e55c79f681cc1f46de34a2

See more details on using hashes here.

File details

Details for the file merf-1.0-py3-none-any.whl.

File metadata

  • Download URL: merf-1.0-py3-none-any.whl
  • Upload date:
  • Size: 14.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.5

File hashes

Hashes for merf-1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 80df116410628469166011107f722d278ae4ba1fde2987c95b822af327f609b0
MD5 ffa91b2e175d1b6b23619236241d3c10
BLAKE2b-256 f776148d10c8568c9288b1f4118d88d6389ac4cfba75c43c083f1bc937b21bcb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page