Skip to main content

Use Minimal Named-Entity Recognizer (MER) inside python

Project description

Downloads

MER (Minimal Named-Entity Recognizer) inside Python

MER is a Named-Entity Recognition tool that identifies terms from any lexicon within input text, providing their exact locations (annotations). It can also link recognized entities to their respective classes when provided with an ontology (OWL file).

A demo is available at: MER Demo

New Stuff

2024

  • LEXICONS: Package here is available.
  • COMMENTS: More comments were added to the scripts to improve readability.

2023

  • ONTOLOGIES: New examples added, namely the ontologies: OSCI, CL, ENVO, and ECTO.

2021

  • DOCKER: Image available: fjmc/mer-image.
  • MULTILINGUAL: English, Spanish, and Portuguese lexicons using DeCS.
  • PYTHON: Interface: lasigeBioTM/merpy.
  • SIMILARITY: get_similarities.sh finds the most similar term also recognized. See here.

Documentation

https://merpy.readthedocs.io/en/latest/

Dependencies

awk

MER was developed and tested using the GNU awk (gawk) and grep. If you have another awk interpreter in your machine, there's no assurance that the program will work.

For example, to install GNU awk on Ubuntu:

sudo apt-get install gawk

ssmpy

To calculate similarities between the recognized entities

pip install ssmpy

Installation

pip install merpy

or

python setup.py install

Then you might want to update the MER scripts and download preprocessed data:

>>> import merpy
>>> merpy.download_mer()
>>> merpy.download_lexicons()

Basic Usage

>>> import merpy
>>> merpy.download_lexicons()
>>> lexicons = merpy.get_lexicons()
>>> merpy.show_lexicons()
lexicons preloaded:
['lexicon', 'bireme_decs_por2020', 'bireme_decs_spa2020', 'wordnet-hyponym', 'radlex', 'doid', 'bireme_decs_eng2020', 'go', 'hp', 'chebi_lite']
lexicons loaded ready to use:
['bireme_decs_por2020', 'chebi_lite', 'hp', 'bireme_decs_spa2020', 'wordnet-hyponym', 'doid', 'lexicon', 'radlex', 'go', 'bireme_decs_eng2020']
lexicons with linked concepts:
['bireme_decs_eng2020', 'doid', 'hp', 'go', 'lexicon', 'bireme_decs_spa2020', 'bireme_decs_por2020', 'radlex', 'chebi_lite']

>>> document = 'Influenza, commonly known as "the flu", is an infectious disease caused by an influenza virus. Symptoms can be mild to severe. The most common symptoms include: a high fever, runny nose, sore throat, muscle pains, headache, coughing, and feeling tired ... Acetylcysteine for reducing the oxygen transport and caffeine to stimulate ... fever, tachypnea ... fiebre, taquipnea ... febre, taquipneia' 
>>> entities = merpy.get_entities(document, "hp") # get_entities_mp uses multiprocessing (set n_cores param)
>>> print(entities)
[['111', '115', 'mild', 'http://purl.obolibrary.org/obo/HP_0012825'], ['119', '125', 'severe', 'http://purl.obolibrary.org/obo/HP_0012828'], ['168', '173', 'fever', 'http://purl.obolibrary.org/obo/HP_0001945'], ['181', '185', 'nose', 'http://purl.obolibrary.org/obo/UBERON_0000004'], ['200', '206', 'muscle', 'http://purl.obolibrary.org/obo/UBERON_0005090'], ['214', '222', 'headache', 'http://purl.obolibrary.org/obo/HP_0002315'], ['224', '232', 'coughing', 'http://purl.obolibrary.org/obo/HP_0012735'], ['246', '251', 'tired', 'http://purl.obolibrary.org/obo/HP_0012378'], ['288', '294', 'oxygen', 'http://purl.obolibrary.org/obo/CHEBI_15379'], ['295', '304', 'transport', 'http://purl.obolibrary.org/obo/GO_0006810'], ['335', '340', 'fever', 'http://purl.obolibrary.org/obo/HP_0001945'], ['342', '351', 'tachypnea', 'http://purl.obolibrary.org/obo/HP_0002789'], ['175', '185', 'runny nose', 'http://purl.obolibrary.org/obo/HP_0031417'], ['187', '198', 'sore throat', 'http://purl.obolibrary.org/obo/HP_0033050']]

>>> entities = merpy.get_entities(document, "bireme_decs_por2020") 
>>> print(entities)
[['0', '9', 'Influenza', 'https://decs.bvsalud.org/ths/?filter=ths_regid&q=D007251'], ['78', '87', 'influenza', 'https://decs.bvsalud.org/ths/?filter=ths_regid&q=D007251'], ['378', '383', 'febre', 'https://decs.bvsalud.org/ths/?filter=ths_regid&q=D005334'], ['385', '395', 'taquipneia', 'https://decs.bvsalud.org/ths/?filter=ths_regid&q=D059246']]

>>> merpy.create_lexicon(["gene1", "gene2", "gene3"], "genelist")
wrote genelist lexicon
>>> merpy.process_lexicon("genelist")
>>> merpy.delete_lexicon("genelist")
deleted genelist lexicon
>>> merpy.download_lexicon("https://github.com/lasigeBioTM/MER/raw/biocreative2017/data/ChEBI.txt", "chebi")
wrote chebi lexicon
>>> merpy.process_lexicon("chebi")

Semantic Similarities

wget http://labs.rd.ciencias.ulisboa.pt/dishin/chebi202104.db.gz
gunzip -N chebi202104.db.gz
>>> import merpy
>>> merpy.process_lexicon("lexicon")
>>> document = "α-maltose and nicotinic acid was found, but not nicotinic acid D-ribonucleotide"
>>> entities = merpy.get_entities(document, "lexicon") 
>>> merpy.get_similarities(entities, 'chebi.db')
[['0', '9', 'α-maltose', 'http://purl.obolibrary.org/obo/CHEBI_18167', 0.02834388514184269], ['14', '28', 'nicotinic acid', 'http://purl.obolibrary.org/obo/CHEBI_15940', 0.07402224403263755], ['48', '62', 'nicotinic acid', 'http://purl.obolibrary.org/obo/CHEBI_15940', 0.07402224403263755], ['48', '79', 'nicotinic acid D-ribonucleotide', 'http://purl.obolibrary.org/obo/CHEBI_15763', 0.07402224403263755]]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

merpy-1.7.13.tar.gz (27.4 kB view details)

Uploaded Source

Built Distribution

merpy-1.7.13-py3-none-any.whl (30.5 kB view details)

Uploaded Python 3

File details

Details for the file merpy-1.7.13.tar.gz.

File metadata

  • Download URL: merpy-1.7.13.tar.gz
  • Upload date:
  • Size: 27.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.8.0 tqdm/4.60.0 CPython/3.6.9

File hashes

Hashes for merpy-1.7.13.tar.gz
Algorithm Hash digest
SHA256 3700f019d7e85688f1c1f7670372cae1e94516d0cad43225587eed0301099c58
MD5 44501d8099ff161114e5d64880ed3462
BLAKE2b-256 906252b94cca668f9e4a0f2f8ca580e5f847ad253efd5ac3e08792ba500f2227

See more details on using hashes here.

File details

Details for the file merpy-1.7.13-py3-none-any.whl.

File metadata

  • Download URL: merpy-1.7.13-py3-none-any.whl
  • Upload date:
  • Size: 30.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.8.0 tqdm/4.60.0 CPython/3.6.9

File hashes

Hashes for merpy-1.7.13-py3-none-any.whl
Algorithm Hash digest
SHA256 04f9f17c8d4d1dc44d8475441b21f1ab84dde590f59dc2c134e03d52e41eb9e4
MD5 eb30dacd8bf88d047846083ee3b14c4c
BLAKE2b-256 d80a74bcc9b93bdb25c566c3fb3b2f3ec1bde18e78f0c5738ed6ac5257671070

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page