Skip to main content

Use Minimal Named-Entity Recognizer (MER) inside python

Project description

Downloads

Use MER scripts inside python.

(from the MER repository)

MER is a Named-Entity Recognition tool which given any lexicon and any input text returns the list of terms recognized in the text, including their exact location (annotations).

Given an ontology (owl file) MER is also able to link the entities to their classes.

More information about MER can be found in:

  • MER: a Shell Script and Annotation Server for Minimal Named Entity Recognition and Linking, F. Couto and A. Lamurias, Journal of Cheminformatics, 10:58, 2018 [https://doi.org/10.1186/s13321-018-0312-9]
  • MER: a Minimal Named-Entity Recognition Tagger and Annotation Server, F. Couto, L. Campos, and A. Lamurias, in BioCreative V.5 Challenge Evaluation, 2017 [https://www.researchgate.net/publication/316545534_MER_a_Minimal_Named-Entity_Recognition_Tagger_and_Annotation_Server]

NEW

Documentation

https://merpy.readthedocs.io/en/latest/

Dependencies

awk

MER was developed and tested using the GNU awk (gawk) and grep. If you have another awk interpreter in your machine, there's no assurance that the program will work.

For example, to install GNU awk on Ubuntu:

sudo apt-get install gawk

ssmpy

To calculate similarities between the recognized entities

pip install ssmpy

Installation

pip install merpy

or

python setup.py install

Then you might want to update the MER scripts and download preprocessed data:

>>> import merpy
>>> merpy.download_mer()
>>> merpy.download_lexicons()

Basic Usage

>>> import merpy
>>> merpy.download_lexicons()
>>> lexicons = merpy.get_lexicons()
>>> merpy.show_lexicons()
lexicons preloaded:
['lexicon', 'bireme_decs_por2020', 'bireme_decs_spa2020', 'wordnet-hyponym', 'radlex', 'doid', 'bireme_decs_eng2020', 'go', 'hp', 'chebi_lite']
lexicons loaded ready to use:
['bireme_decs_por2020', 'chebi_lite', 'hp', 'bireme_decs_spa2020', 'wordnet-hyponym', 'doid', 'lexicon', 'radlex', 'go', 'bireme_decs_eng2020']
lexicons with linked concepts:
['bireme_decs_eng2020', 'doid', 'hp', 'go', 'lexicon', 'bireme_decs_spa2020', 'bireme_decs_por2020', 'radlex', 'chebi_lite']

>>> document = 'Influenza, commonly known as "the flu", is an infectious disease caused by an influenza virus. Symptoms can be mild to severe. The most common symptoms include: a high fever, runny nose, sore throat, muscle pains, headache, coughing, and feeling tired ... Acetylcysteine for reducing the oxygen transport and caffeine to stimulate ... fever, tachypnea ... fiebre, taquipnea ... febre, taquipneia' 
>>> entities = merpy.get_entities(document, "hp") # get_entities_mp uses multiprocessing (set n_cores param)
>>> print(entities)
[['111', '115', 'mild', 'http://purl.obolibrary.org/obo/HP_0012825'], ['119', '125', 'severe', 'http://purl.obolibrary.org/obo/HP_0012828'], ['168', '173', 'fever', 'http://purl.obolibrary.org/obo/HP_0001945'], ['181', '185', 'nose', 'http://purl.obolibrary.org/obo/UBERON_0000004'], ['200', '206', 'muscle', 'http://purl.obolibrary.org/obo/UBERON_0005090'], ['214', '222', 'headache', 'http://purl.obolibrary.org/obo/HP_0002315'], ['224', '232', 'coughing', 'http://purl.obolibrary.org/obo/HP_0012735'], ['246', '251', 'tired', 'http://purl.obolibrary.org/obo/HP_0012378'], ['288', '294', 'oxygen', 'http://purl.obolibrary.org/obo/CHEBI_15379'], ['295', '304', 'transport', 'http://purl.obolibrary.org/obo/GO_0006810'], ['335', '340', 'fever', 'http://purl.obolibrary.org/obo/HP_0001945'], ['342', '351', 'tachypnea', 'http://purl.obolibrary.org/obo/HP_0002789'], ['175', '185', 'runny nose', 'http://purl.obolibrary.org/obo/HP_0031417'], ['187', '198', 'sore throat', 'http://purl.obolibrary.org/obo/HP_0033050']]

>>> entities = merpy.get_entities(document, "bireme_decs_por2020") 
>>> print(entities)
[['0', '9', 'Influenza', 'https://decs.bvsalud.org/ths/?filter=ths_regid&q=D007251'], ['78', '87', 'influenza', 'https://decs.bvsalud.org/ths/?filter=ths_regid&q=D007251'], ['378', '383', 'febre', 'https://decs.bvsalud.org/ths/?filter=ths_regid&q=D005334'], ['385', '395', 'taquipneia', 'https://decs.bvsalud.org/ths/?filter=ths_regid&q=D059246']]

>>> merpy.create_lexicon(["gene1", "gene2", "gene3"], "genelist")
wrote genelist lexicon
>>> merpy.process_lexicon("genelist")
>>> merpy.delete_lexicon("genelist")
deleted genelist lexicon
>>> merpy.download_lexicon("https://github.com/lasigeBioTM/MER/raw/biocreative2017/data/ChEBI.txt", "chebi")
wrote chebi lexicon
>>> merpy.process_lexicon("chebi")

Semantic Similarities

wget http://labs.rd.ciencias.ulisboa.pt/dishin/chebi202104.db.gz
gunzip -N chebi202104.db.gz
>>> import merpy
>>> merpy.process_lexicon("lexicon")
>>> document = "α-maltose and nicotinic acid was found, but not nicotinic acid D-ribonucleotide"
>>> entities = merpy.get_entities(document, "lexicon") 
>>> merpy.get_similarities(entities, 'chebi.db')
[['0', '9', 'α-maltose', 'http://purl.obolibrary.org/obo/CHEBI_18167', 0.02834388514184269], ['14', '28', 'nicotinic acid', 'http://purl.obolibrary.org/obo/CHEBI_15940', 0.07402224403263755], ['48', '62', 'nicotinic acid', 'http://purl.obolibrary.org/obo/CHEBI_15940', 0.07402224403263755], ['48', '79', 'nicotinic acid D-ribonucleotide', 'http://purl.obolibrary.org/obo/CHEBI_15763', 0.07402224403263755]]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

merpy-1.7.11.tar.gz (25.7 kB view details)

Uploaded Source

Built Distribution

merpy-1.7.11-py3-none-any.whl (28.8 kB view details)

Uploaded Python 3

File details

Details for the file merpy-1.7.11.tar.gz.

File metadata

  • Download URL: merpy-1.7.11.tar.gz
  • Upload date:
  • Size: 25.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.6.0 requests-toolbelt/0.8.0 tqdm/4.60.0 CPython/3.6.9

File hashes

Hashes for merpy-1.7.11.tar.gz
Algorithm Hash digest
SHA256 7761eb601642c6b300d6af3357b12f8ddf93c37043a840d28607e88f2f8ff3da
MD5 05abfa441288d6dffb31b84aca09c9c0
BLAKE2b-256 0f9ff3962a0606116fcf66dc4ed094524fe5a62a8846402d11096bcdc5eafec2

See more details on using hashes here.

File details

Details for the file merpy-1.7.11-py3-none-any.whl.

File metadata

  • Download URL: merpy-1.7.11-py3-none-any.whl
  • Upload date:
  • Size: 28.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.6.0 requests-toolbelt/0.8.0 tqdm/4.60.0 CPython/3.6.9

File hashes

Hashes for merpy-1.7.11-py3-none-any.whl
Algorithm Hash digest
SHA256 fe95e6ea22b6ac25826bc9fb4c791c006079192b582d200bc8425611940abb6a
MD5 0ffa007a667369a0b57f61cb238e6736
BLAKE2b-256 672da56c39833c51f0afb8ecac35494b7b7fbf621f9e3ba0267a6c7562c49df4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page