Multi Energy System Optimization
Project description
MESIDO
MESIDO is an optimization application for optimal planning, design and operation of Energy Systems with the current main focus on District Heating Systems (DHS). The current application focuses on a Mixed Integer Linear Problem (MILP) approach, with multiple linearization strategies to conservatively approximate the steady-state physics and financial models. See for example the head loss validation test, using pandapipes, in the test folder. All physics, placement, sizing and financial models are combined in the TechnoEconomicMixin class. When inherited this class can be combined with objective functions (that typically incorporate the financial aspects) and interface methods to create an optimization workflow (see also running an example).
The main supported method for defining your Energy system is ESDL (Energy System Description Language), which is a modelling language for energy systems. See also: https://github.com/EnergyTransition/ESDL. With ESDL you can define assets like demands, sources, pipes, etc. and fill in their attributes. The ESDLMixin class will parse the ESDL file and utilize the attributes to build up the model representation.
The documentation on the mathematical modelling and workflow application can be found on: readthedocs: https://mesido.readthedocs.io/en/latest/.
Installation
Installation of the MESIDO library is as simple as::
# 1a. Use pip to install directly
pip install mesido
If you are going to develop and change the source code, you probably want to do something like::
# 1b. Use git clone and pip to make an editable/developer installation
git clone https://github.com/Multi-Energy-Systems-Optimization/mesido
pip install -e mesido
MESIDO depends on RTC-Tools <https://gitlab.com/deltares/rtc-tools.git>
_, which is automatically installed as one of its dependencies.
Running an example
To make sure that everything is set-up correctly, you can run one of the example cases. These do not come with the installation, and need to be downloaded separately::
# 1. Clone the repository
git clone https://github.com/Multi-Energy-Systems-Optimization/mesido.git
# 2. Change directory to the example folder
cd mesido/examples/pipe_diameter_sizing/src
# 3. Run the example
python example.py
You will see the progress in your shell. If all is well, you should see something like the following output:
In this example.py file you can see a small workflow being set-up. The PipeDiameterSizingProblem class inherits from (Note only the *classes are defined in MESIDO the others come from rtc-tools package):
- CollocatedIntegratedOptimizationProblem: This class does all the discretization of the state variables in your problem.
- *ESDLMixin: This class does the parsing and setting up of a model based on an ESDL file.
- GoalProgrammingMixin: This class allows you to add Goals (objective functions) with different priorities.
- LinearizedOrderGoalProgrammingMixin: This class allows you to add higher order goals (e.g. order=2) for MILP problems.
- *TechnoEconomicMixin: This class combines all the Mixin classes required for a full techno-economic optimization.
Within the PipeDiameterSizingProblem class you can see that the path_goals() function is overwritten and that
a path_goal with priority one is added to meet the heat demands. The definition path_goal is used
to define a goal that is applied to a state variable at every time step. Furthermore, the goals() method is also overwritten
in this case where an objective with priority two is added to minimize length*diameter
.
The goals() method is used here for global variables that do not change over time. The priorities indicate the sequential order
in which the optimizer would be applied to the goals. In this example the heat demand is matched first, after which priority 2 length*diameter
is minimized. In this example the objective of the priority one goal constraints the priority two goal optimization, which ensures that the
optimization of the priority two goal does not have impact on the optimal result of the priority one goal.
Contribute
You can contribute to this code through Pull Request on GitHub. Please, make sure that your code is coming with unit tests to ensure full coverage and continuous integration in the API.
GitHub: https://github.com/Multi-Energy-Systems-Optimization/mesido
Release
This package is released on pypi here whenever a new tag is pushed. In order to release this package:
- Make sure that all relevant merge requests and commits have been merged to the master and/or poc-release branch.
- Run
git checkout master
orgit checkout poc-release
to switch to the release branch. - Run
git pull origin master
orgit pull origin poc-release
to pull all latest changes. - Run
git tag <new_version>
where<new_version>
is the new version number. - Run
git push origin <new_version>
to push the tag to Github. - Check Github to confirm the release is processed without errors.
- Once the release has finished, confirm the new version is available on pypi.
License
This code base is licensed as LGPLv3 as specified in LICENSE
. However, the LGPLv3 license
references the GPLv3 license. As such, we have added a copy of GPLv3 as a reference in the file
additional_info_for_license.txt
. This does NOT entail that this code base is licensed as GPLv3
.
The copy of the GPLv3
license is only added as a reference.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mesido-0.1.8.2.tar.gz
.
File metadata
- Download URL: mesido-0.1.8.2.tar.gz
- Upload date:
- Size: 355.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3577aa99807186d3501f88e5ef4974370e2555f5ed71c658f8fdbde5f3b871f8 |
|
MD5 | 1a23ef0a1c7e02b236fcee7f80573a0d |
|
BLAKE2b-256 | 73c3b44b90a443396c3d609be9fb0aa8fbd18eb532e905de882d1bcb0fd87c53 |
Provenance
The following attestation bundles were made for mesido-0.1.8.2.tar.gz
:
Publisher:
release.yml
on Multi-Energy-Systems-Optimization/mesido
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
mesido-0.1.8.2.tar.gz
- Subject digest:
3577aa99807186d3501f88e5ef4974370e2555f5ed71c658f8fdbde5f3b871f8
- Sigstore transparency entry: 149048706
- Sigstore integration time:
- Predicate type:
File details
Details for the file mesido-0.1.8.2-py3-none-any.whl
.
File metadata
- Download URL: mesido-0.1.8.2-py3-none-any.whl
- Upload date:
- Size: 321.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 71aec13afb87f4ed6ac808c4f48e5ed07b0e364e0461e80300fa96b5776aefdf |
|
MD5 | 05c10fab2b693a46cc3f5f4dfe8cb533 |
|
BLAKE2b-256 | 0eaf705d6ca33ac47039bad4caa7bca27c7a4dc54d7a72da380f79f0b4aa753d |
Provenance
The following attestation bundles were made for mesido-0.1.8.2-py3-none-any.whl
:
Publisher:
release.yml
on Multi-Energy-Systems-Optimization/mesido
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
mesido-0.1.8.2-py3-none-any.whl
- Subject digest:
71aec13afb87f4ed6ac808c4f48e5ed07b0e364e0461e80300fa96b5776aefdf
- Sigstore transparency entry: 149048707
- Sigstore integration time:
- Predicate type: