Meta Onnx Toolkit
Project description
metaonnx
metaonnx部署通用框架
1、安装最新版 meta-cv
pip install meta-cv
2、安装最新版 meta-onnx
pip install meta-onnx
3、图像分类示例(参考classification_demo.py代码)
import cv2, platform
import metaonnx as m
Classification = m.Classification
y = Classification(model_path='models/mixnet_xl_bs24_4.onnx',
input_width=224,
input_height=224,
use_preprocess=True,
normal=True,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
swap=(2, 0, 1),
class_names=classnames)
batch_size = 24
img = cv2.imread('models/bottle.jpg')
img_list = [img[:, :, ::-1]] * batch_size if batch_size > 1 else img[:, :, ::-1]
_dets, _scores, _labels = y.predict(img_list)
# 显示
y.show(img, _dets, _scores, _labels)
cv2.imwrite("models/bottle.png", img)
4、目标检测示例(参考detection_demo.py代码)
import platform, cv2
import metaonnx as m
Detection = mo.Detection
y = Detection(model_path='models/yolov8m.onnx',
input_width=640,
input_height=480,
use_preprocess=True,
pad=True,
normal=True,
swap=(2, 0, 1),
confidence_thresh=0.5,
nms_thresh=0.3,
class_names=classnames)
batch_size = 1
img = cv2.imread('models/bus.jpg')
img_list = [img[:, :, ::-1]] * batch_size if batch_size > 1 else img[:, :, ::-1]
_dets, _scores, _labels = y.predict(img_list)
# 显示
y.show(img, _dets[-1], _scores[-1], _labels[-1])
cv2.imwrite("models/bus.png", img)
5、实例分割示例(参考segment_demo.py代码)
import cv2
import metaonnx as m
Segment = mo.Segment
y = Segment(model_path='models/yolov8m-seg.onnx',
input_width=640,
input_height=480,
use_preprocess=True,
pad=True,
normal=True,
swap=(2, 0, 1),
confidence_thresh=0.5,
nms_thresh=0.3,
class_names=classnames)
batch_size = 1
img = cv2.imread('models/bus.jpg')
img_list = [img[:, :, ::-1]] * batch_size if batch_size > 1 else img[:, :, ::-1]
_dets, _scores, _labels = y.predict(img_list)
# 显示
y.show(img, _dets[-1], _scores[-1], _labels[-1])
cv2.imwrite("models/bus.png", img)
6、人脸检测示例(参考face_detection_demo.py代码)
import cv2
import metaonnx as m
FaceDetection = m.FaceDetection
y = FaceDetection(model_path='models/face_detection.onnx',
input_width=480,
input_height=640,
use_preprocess=True,
pad=True,
normal=True,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
swap=(2, 0, 1),
confidence_thresh=0.5,
nms_thresh=0.4,
class_names=['face'])
batch_size = 1
img = cv2.imread('models/face.jpg')
img_list = [img[:, :, ::-1]] * batch_size if batch_size > 1 else img[:, :, ::-1]
_dets, _scores, _labels = y.predict(img_list)
y.show(img, _dets[-1], _scores[-1], _labels[-1])
cv2.imwrite("models/face.png", img)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
meta-onnx-0.1.2.tar.gz
(4.5 kB
view details)
Built Distribution
File details
Details for the file meta-onnx-0.1.2.tar.gz
.
File metadata
- Download URL: meta-onnx-0.1.2.tar.gz
- Upload date:
- Size: 4.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.15 tqdm/4.64.0 importlib-metadata/4.2.0 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3dfc8a3e80749b987d91d1ec09451b12a50d176081330d45277583451b0f3581 |
|
MD5 | 5c0af4daf2642d1c92d0eee87e5823e0 |
|
BLAKE2b-256 | 05b7fa3c4221707ba5742e521fb59c482a056d47d908ff9199991d26941d580a |
File details
Details for the file meta_onnx-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: meta_onnx-0.1.2-py3-none-any.whl
- Upload date:
- Size: 9.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.15 tqdm/4.64.0 importlib-metadata/4.2.0 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c926c2625b7e312dcced703f9503c9b223fd6a3b0ff0cbb4e9b66c470ccc344 |
|
MD5 | 55c21937b937f1783b5d7ac2b0453b13 |
|
BLAKE2b-256 | 5f011a54f39fc2f03c6a2e41888885b58ae587554c549903fc0d7b5a36650fd6 |