Skip to main content

Meta RKNN Toolkit

Project description

metarknn

metarknn部署通用框架

1、安装最新版 meta-cv

pip install meta-cv

2、安装最新版 meta-rknn

pip install meta-rknn

3、图像分类示例(参考classification_demo.py代码)

import cv2, platform
import metarknn as m

Classification = m.Classification

y = Classification(model_path='models/mixnet_xl_bs24_2.rknn',
                   input_width=224,
                   input_height=224,
                   use_preprocess=True,
                   class_names=classnames,
                   device_id=0)

batch_size = 24
img = cv2.imread('models/bottle.jpg')
img_list = [img[:, :, ::-1]] * batch_size if batch_size > 1 else img[:, :, ::-1]
_dets, _scores, _labels = y.predict(img_list)

# 显示
y.show(img, _dets, _scores, _labels)
cv2.imwrite("models/bottle.png", img)

4、目标检测示例(参考detection_demo.py代码)

import cv2, platform
import metarknn as m

Detection = m.Detection

y = Detection(model_path='models/yolov8m.rknn',
              input_width=640,
              input_height=480,
              use_preprocess=True,
              pad=True,
              confidence_thresh=0.5,
              nms_thresh=0.3,
              class_names=classnames,
              device_id=0)

batch_size = 1
img = cv2.imread('models/bus.jpg')
img_list = [img[:, :, ::-1]] * batch_size if batch_size > 1 else img[:, :, ::-1]
_dets, _scores, _labels = y.predict(img_list)

# 显示
y.show(img, _dets[-1], _scores[-1], _labels[-1])
cv2.imwrite("models/bus.png", img)

5、实例分割示例(参考segment_demo.py代码)

import platform, cv2
import metarknn as m

Segment = m.Segment

y = Segment(model_path='models/yolov8m-seg.rknn',
            input_width=640,
            input_height=480,
            use_preprocess=True,
            pad=True,
            confidence_thresh=0.5,
            nms_thresh=0.3,
            class_names=classnames,
            device_id=0)

batch_size = 1
img = cv2.imread('models/bus.jpg')
img_list = [img[:, :, ::-1]] * batch_size if batch_size > 1 else img[:, :, ::-1]
_dets, _scores, _labels = y.predict(img_list)

# 显示
y.show(img, _dets[-1], _scores[-1], _labels[-1])
cv2.imwrite("models/bus.png", img)

6、模型转换与量化(本地运行)

import metarknn as m

Quantization = m.Quantization

q = Quantization(model_path,    # onnx模型路径
                 dataset,   # dataset文件路径
                 mean=[[0, 0, 0]],
                 std=[[255, 255, 255]],
                 batch_size=1)   # 定义模型输出层

if is_hybrid:   # 是否混合量化
    self.model = q.hybrid_convert()
else:   # 非混合量化(是否int8量化)
    self.model = q.convert(quantize)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

meta-rknn-0.1.2.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

meta_rknn-0.1.2-py3-none-any.whl (12.3 kB view details)

Uploaded Python 3

File details

Details for the file meta-rknn-0.1.2.tar.gz.

File metadata

  • Download URL: meta-rknn-0.1.2.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.15 tqdm/4.64.0 importlib-metadata/4.2.0 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.13

File hashes

Hashes for meta-rknn-0.1.2.tar.gz
Algorithm Hash digest
SHA256 a6faa35db68aa03ca6ccf54d92acdcdd15d617da3d30156a5c9e88471619eedf
MD5 7a9b08fb6e3b0449b3e482a8b616bb90
BLAKE2b-256 dded4e90edf558769ea2508f0796b3ad245f3230f4128ce372373e45c8b896d0

See more details on using hashes here.

File details

Details for the file meta_rknn-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: meta_rknn-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 12.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.15 tqdm/4.64.0 importlib-metadata/4.2.0 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.13

File hashes

Hashes for meta_rknn-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6b193671d151aa52f88b468cc7afcacd3d743ee88144a63a350d708f4ec0c0d2
MD5 75e9a1b5591ac8456373edb3e568dffc
BLAKE2b-256 4e4ff8fb0787ad05466c0580929a3e5953dd70eec014d66dda4caa091c939146

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page