Meta RKNN Toolkit
Project description
metarknn
metarknn部署通用框架
1、安装最新版 meta-cv
pip install meta-cv
2、安装最新版 meta-rknn
pip install meta-rknn
3、图像分类示例(参考classification_demo.py代码)
import cv2, platform
import metarknn as m
Classification = m.Classification
y = Classification(model_path='models/mixnet_xl_bs24_2.rknn',
input_width=224,
input_height=224,
use_preprocess=True,
class_names=classnames,
device_id=0)
batch_size = 24
img = cv2.imread('models/bottle.jpg')
img_list = [img[:, :, ::-1]] * batch_size if batch_size > 1 else img[:, :, ::-1]
_dets, _scores, _labels = y.predict(img_list)
# 显示
y.show(img, _dets, _scores, _labels)
cv2.imwrite("models/bottle.png", img)
4、目标检测示例(参考detection_demo.py代码)
import cv2, platform
import metarknn as m
Detection = m.Detection
y = Detection(model_path='models/yolov8m.rknn',
input_width=640,
input_height=480,
use_preprocess=True,
pad=True,
confidence_thresh=0.5,
nms_thresh=0.3,
class_names=classnames,
device_id=0)
batch_size = 1
img = cv2.imread('models/bus.jpg')
img_list = [img[:, :, ::-1]] * batch_size if batch_size > 1 else img[:, :, ::-1]
_dets, _scores, _labels = y.predict(img_list)
# 显示
y.show(img, _dets[-1], _scores[-1], _labels[-1])
cv2.imwrite("models/bus.png", img)
5、实例分割示例(参考segment_demo.py代码)
import platform, cv2
import metarknn as m
Segment = m.Segment
y = Segment(model_path='models/yolov8m-seg.rknn',
input_width=640,
input_height=480,
use_preprocess=True,
pad=True,
confidence_thresh=0.5,
nms_thresh=0.3,
class_names=classnames,
device_id=0)
batch_size = 1
img = cv2.imread('models/bus.jpg')
img_list = [img[:, :, ::-1]] * batch_size if batch_size > 1 else img[:, :, ::-1]
_dets, _scores, _labels = y.predict(img_list)
# 显示
y.show(img, _dets[-1], _scores[-1], _labels[-1])
cv2.imwrite("models/bus.png", img)
6、模型转换与量化(本地运行)
import metarknn as m
Quantization = m.Quantization
q = Quantization(model_path, # onnx模型路径
dataset, # dataset文件路径
mean=[[0, 0, 0]],
std=[[255, 255, 255]],
batch_size=1) # 定义模型输出层
if is_hybrid: # 是否混合量化
self.model = q.hybrid_convert()
else: # 非混合量化(是否int8量化)
self.model = q.convert(quantize)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
meta-rknn-0.1.2.tar.gz
(5.0 kB
view details)
Built Distribution
meta_rknn-0.1.2-py3-none-any.whl
(12.3 kB
view details)
File details
Details for the file meta-rknn-0.1.2.tar.gz
.
File metadata
- Download URL: meta-rknn-0.1.2.tar.gz
- Upload date:
- Size: 5.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.15 tqdm/4.64.0 importlib-metadata/4.2.0 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a6faa35db68aa03ca6ccf54d92acdcdd15d617da3d30156a5c9e88471619eedf |
|
MD5 | 7a9b08fb6e3b0449b3e482a8b616bb90 |
|
BLAKE2b-256 | dded4e90edf558769ea2508f0796b3ad245f3230f4128ce372373e45c8b896d0 |
File details
Details for the file meta_rknn-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: meta_rknn-0.1.2-py3-none-any.whl
- Upload date:
- Size: 12.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.15 tqdm/4.64.0 importlib-metadata/4.2.0 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b193671d151aa52f88b468cc7afcacd3d743ee88144a63a350d708f4ec0c0d2 |
|
MD5 | 75e9a1b5591ac8456373edb3e568dffc |
|
BLAKE2b-256 | 4e4ff8fb0787ad05466c0580929a3e5953dd70eec014d66dda4caa091c939146 |