Skip to main content

Meta TR Toolkit

Project description

metart

metart部署通用框架

1、安装最新版 meta-cv

pip install meta-cv

2、安装最新版 meta-rt

pip install meta-rt

3、目标检测示例(参考detection_demo.py代码)

import platform, cv2
import metart as m

Detection = m.Detection

y = Detection(model_path='models/yolov8m.rt',
              input_width=640,
              input_height=480,
              use_preprocess=True,
              pad=True,
              normal=True,
              swap=(2, 0, 1),
              confidence_thresh=0.5,
              nms_thresh=0.3,
              class_names=classnames,
              device_id=0)

batch_size = 1
img = cv2.imread('models/bus.jpg')
img_list = [img[:, :, ::-1]] * batch_size if batch_size > 1 else img[:, :, ::-1]
_dets, _scores, _labels = y.predict(img_list)

# 显示
y.show(img, _dets[-1], _scores[-1], _labels[-1])
cv2.imwrite("models/bus.png", img)

4、实例分割示例(参考segment_demo.py代码)

import platform, cv2
import metart as m

Segment = m.Segment

y = Segment(model_path='models/yolov8m-seg.rt',
            input_width=640,
            input_height=480,
            use_preprocess=True,
            pad=True,
            normal=True,
            swap=(2, 0, 1),
            confidence_thresh=0.5,
            nms_thresh=0.3,
            class_names=classnames,
            device_id=0)

batch_size = 1
img = cv2.imread('models/bus.jpg')
img_list = [img[:, :, ::-1]] * batch_size if batch_size > 1 else img[:, :, ::-1]
_dets, _scores, _labels = y.predict(img_list)

# 显示
y.show(img, _dets[-1], _scores[-1], _labels[-1])
cv2.imwrite("models/bus.png", img)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

meta-rt-0.1.1.tar.gz (5.3 kB view details)

Uploaded Source

Built Distribution

meta_rt-0.1.1-py3-none-any.whl (10.7 kB view details)

Uploaded Python 3

File details

Details for the file meta-rt-0.1.1.tar.gz.

File metadata

  • Download URL: meta-rt-0.1.1.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for meta-rt-0.1.1.tar.gz
Algorithm Hash digest
SHA256 db0b782fe6fb70fa280b52c54d88dcc99568e2213160f3b56d54030b63f3fd78
MD5 5839820258ef950f4fe6c2d3fe52afa4
BLAKE2b-256 2a40aea361a36e34ca7015b4db7bb83aea909b6ee1c06487fda865173bbf4bbf

See more details on using hashes here.

File details

Details for the file meta_rt-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: meta_rt-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 10.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for meta_rt-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ef8abeccd25e8e233e0f84d18ce9b7ffce5eae7ed974394c743b93ddfa23fa73
MD5 653f2cd8a6be74eda6497cdc0e1b8db4
BLAKE2b-256 18fde88ec5202c7bdd563f7b897dcc0848dddb131021e94578effb4de1ac234b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page