Skip to main content

Meta TR Toolkit

Project description

metart

metart部署通用框架

1、安装最新版 meta-cv

pip install meta-cv

2、安装最新版 meta-rt

pip install meta-rt

3、目标检测示例(参考detection_demo.py代码)

import platform, cv2
import metart as m

Detection = m.Detection

y = Detection(model_path='models/yolov8m.rt',
              input_width=640,
              input_height=480,
              use_preprocess=True,
              pad=True,
              normal=True,
              swap=(2, 0, 1),
              confidence_thresh=0.5,
              nms_thresh=0.3,
              class_names=classnames,
              device_id=0)

batch_size = 1
img = cv2.imread('models/bus.jpg')
img_list = [img[:, :, ::-1]] * batch_size if batch_size > 1 else img[:, :, ::-1]
_dets, _scores, _labels = y.predict(img_list)

# 显示
y.show(img, _dets[-1], _scores[-1], _labels[-1])
cv2.imwrite("models/bus.png", img)

4、实例分割示例(参考segment_demo.py代码)

import platform, cv2
import metart as m

Segment = m.Segment

y = Segment(model_path='models/yolov8m-seg.rt',
            input_width=640,
            input_height=480,
            use_preprocess=True,
            pad=True,
            normal=True,
            swap=(2, 0, 1),
            confidence_thresh=0.5,
            nms_thresh=0.3,
            class_names=classnames,
            device_id=0)

batch_size = 1
img = cv2.imread('models/bus.jpg')
img_list = [img[:, :, ::-1]] * batch_size if batch_size > 1 else img[:, :, ::-1]
_dets, _scores, _labels = y.predict(img_list)

# 显示
y.show(img, _dets[-1], _scores[-1], _labels[-1])
cv2.imwrite("models/bus.png", img)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

meta-rt-0.1.3.tar.gz (5.2 kB view details)

Uploaded Source

Built Distribution

meta_rt-0.1.3-py3-none-any.whl (10.7 kB view details)

Uploaded Python 3

File details

Details for the file meta-rt-0.1.3.tar.gz.

File metadata

  • Download URL: meta-rt-0.1.3.tar.gz
  • Upload date:
  • Size: 5.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.15 tqdm/4.64.0 importlib-metadata/4.2.0 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.13

File hashes

Hashes for meta-rt-0.1.3.tar.gz
Algorithm Hash digest
SHA256 190de326cb143e4cb59659a0b516523898c6f48f8ff823269afeeae1ff2e9ff2
MD5 a0dde888e63c304c257daed07b9f70ed
BLAKE2b-256 2514b05065e34e75836d635923debeeaea52a9848ec93cae993d508fea6bc866

See more details on using hashes here.

File details

Details for the file meta_rt-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: meta_rt-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 10.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.15 tqdm/4.64.0 importlib-metadata/4.2.0 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.13

File hashes

Hashes for meta_rt-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 7fb664c2d966837f207a3c1d091f645e23a5f0a1b6e2fb0f1a4ed1b2750fc7f2
MD5 c922de7dc2393d24f94b3dc0c52f8dd5
BLAKE2b-256 2d82960392b2b37c87544c9c8295dc6f125bf5887c41bb876393f58850543562

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page