Skip to main content

A package for broadcasting epidemiological and ecological models over meta-populations.

Project description

MetaCast

A package for broadCASTing epidemiological and ecological models over META-populations.

Summary

MetaCast is a python package for broadcasting epidemiological and ecological ODE based models over metapopulations (structured populations). Users first define a function describing the subpopulation model. MetaCast's users then define the dimensions of metapopulations that this subpopulation is broadcast over. These dimensions can be flexibly defined allowing for multiple dimensions and migration (flows) of populations between subpopulations. In addition to the metapopulation suite MetaCast has several features. A multinomial seeder allows users to randomly select infected stages to place an infected population in based on the occupancy time of infected states. MetaCast's event queue suite can handle discrete events within simulations, such as movement of populations between compartments and changes in parameter values. Sensitivity analysis can be done in MetaCast using parallelisable Latin Hypercube Sampling and Partial Rank Correlation Coefficient functions. All of this makes MetaCast an ideal package not only for modelling metapopulations but for wider scenario analysis.

Installation

Requirements

Python 3.10 and pip. Package requirements:

  • numpy >= 1.26.3
  • pandas >= 2.1.4
  • scipy >= 1.11.4
  • pingouin >= 0.5.4
  • tqdm >= 4.66.1
  • dask >= 2024.2.1
  • distributed >= 2024.2.1

For running demonstration jupyter notebooks

  • bokeh >= 3.3.4
  • seaborn >= 0.13.2
  • jupyter >= 1.0.0

Installing via pip

Note this should also install required packages.

pip install metacast

Usage

See jupyter notebooks in demonstration directory of homepage: https://github.com/m-d-grunnill/MetaCast/tree/main/demonstrations

Documentation

https://metacast.readthedocs.io/en/latest/index.html

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metacast-0.1.4.tar.gz (35.5 kB view hashes)

Uploaded Source

Built Distribution

metacast-0.1.4-py3-none-any.whl (36.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page