Skip to main content

MetaCluster: An Open-Source Python Library for Metaheuristic-based Clustering Problems

Project description

MetaCluster


GitHub release Wheel PyPI version PyPI - Python Version PyPI - Status Downloads Tests & Publishes to PyPI GitHub Release Date Documentation Status Chat GitHub contributors GitTutorial DOI License: GPL v3

MetaCluster is the largest open-source nature-inspired optimization (Metaheuristic Algorithms) library for clustering problem in Python

  • Free software: GNU General Public License (GPL) V3 license
  • Provided 3 classes: MetaCluster, MhaKCentersClustering, and MhaKMeansTuner
  • Total nature-inspired metaheuristic optimizers (Metaheuristic Algorithms): > 200 optimizers
  • Total objective functions (as fitness): > 40 objectives
  • Total supported datasets: 48 datasets from Scikit learn, UCI, ELKI, KEEL...
  • Total performance metrics: > 40 metrics
  • Total different way of detecting the K value: >= 10 methods
  • Documentation: https://metacluster.readthedocs.io/en/latest/
  • Python versions: >= 3.7.x
  • Dependencies: numpy, scipy, scikit-learn, pandas, mealpy, permetrics, plotly, kaleido

Installation

$ pip install metacluster==1.2.0
  • Install directly from source code
$ git clone https://github.com/thieu1995/metacluster.git
$ cd metacluster
$ python setup.py install
  • In case, you want to install the development version from Github:
$ pip install git+https://github.com/thieu1995/permetrics 

After installation, you can import MetaCluster as any other Python module:

$ python
>>> import metacluster
>>> metacluster.__version__

Examples

Let's go through some examples.

1. First, load dataset. You can use the available datasets from MetaCluster:

# Load available dataset from MetaCluster
from metacluster import get_dataset

# Try unknown data
get_dataset("unknown")
# Enter: 1      -> This wil list all of avaialble dataset

data = get_dataset("Arrhythmia")
  • Or you can load your own dataset
import pandas as pd
from metacluster import Data

# load X and y
# NOTE MetaCluster accepts numpy arrays only, hence use the .values attribute
dataset = pd.read_csv('examples/dataset.csv', index_col=0).values
X, y = dataset[:, 0:-1], dataset[:, -1]
data = Data(X, y, name="my-dataset")

2. Next, scale your features

You should confirm that your dataset is scaled and normalized

# MinMaxScaler 
data.X, scaler = data.scale(data.X, method="MinMaxScaler", feature_range=(0, 1))

# StandardScaler 
data.X, scaler = data.scale(data.X, method="StandardScaler")

# MaxAbsScaler 
data.X, scaler = data.scale(data.X, method="MaxAbsScaler")

# RobustScaler 
data.X, scaler = data.scale(data.X, method="RobustScaler")

# Normalizer 
data.X, scaler = data.scale(data.X, method="Normalizer", norm="l2")   # "l1" or "l2" or "max"

3. Next, select Metaheuristic Algorithm, Its parameters, list of objectives, and list of performance metrics

list_optimizer = ["BaseFBIO", "OriginalGWO", "OriginalSMA"]
list_paras = [
    {"name": "FBIO", "epoch": 10, "pop_size": 30},
    {"name": "GWO", "epoch": 10, "pop_size": 30},
    {"name": "SMA", "epoch": 10, "pop_size": 30}
]
list_obj = ["SI", "RSI"]
list_metric = ["BHI", "DBI", "DI", "CHI", "SSEI", "NMIS", "HS", "CS", "VMS", "HGS"]

You can check all supported metaheuristic algorithms from: https://github.com/thieu1995/mealpy. All supported clustering objectives and metrics from: https://github.com/thieu1995/permetrics.

If you don't want to read the documents, you can print out all supported information by:

from metacluster import MetaCluster 

# Get all supported methods and print them out
MetaCluster.get_support(name="all")

4. Next, create an instance of MetaCluster class and run it.

model = MetaCluster(list_optimizer=list_optimizer, list_paras=list_paras, list_obj=list_obj, n_trials=3, seed=10)

model.execute(data=data, cluster_finder="elbow", list_metric=list_metric, save_path="history", verbose=False)

model.save_boxplots()
model.save_convergences()

As you can see, you can define different datasets and using the same model to run it. Remember to set the name to your dataset, because the folder that hold your results is the name of your dataset. More examples can be found here

Support

Official links (questions, problems)

Citation Request

Please include these citations if you plan to use this library:

@software{van_thieu_nguyen_2023_8220709,
  author       = {Nguyen Van Thieu},
  title        = {MetaCluster: An Open-Source Python Library for Metaheuristic-based Clustering Problems},
  month        = aug,
  year         = 2023,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.8214539},
  url          = {https://github.com/thieu1995/metacluster}
}

@article{van2023mealpy,
  title={MEALPY: An open-source library for latest meta-heuristic algorithms in Python},
  author={Van Thieu, Nguyen and Mirjalili, Seyedali},
  journal={Journal of Systems Architecture},
  year={2023},
  publisher={Elsevier},
  doi={10.1016/j.sysarc.2023.102871}
}

Supported links

1. https://jtemporal.com/kmeans-and-elbow-method/
2. https://medium.com/@masarudheena/4-best-ways-to-find-optimal-number-of-clusters-for-clustering-with-python-code-706199fa957c
3. https://github.com/minddrummer/gap/blob/master/gap/gap.py
4. https://www.tandfonline.com/doi/pdf/10.1080/03610927408827101
5. https://doi.org/10.1016/j.engappai.2018.03.013
6. https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Clustering-Dimensionality-Reduction/Clustering_metrics.ipynb
7. https://elki-project.github.io/
8. https://sci2s.ugr.es/keel/index.php
9. https://archive.ics.uci.edu/datasets
10. https://python-charts.com/distribution/box-plot-plotly/
11. https://plotly.com/python/box-plots/?_ga=2.50659434.2126348639.1688086416-114197406.1688086416#box-plot-styling-mean--standard-deviation

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metacluster-1.2.0.tar.gz (2.6 MB view details)

Uploaded Source

Built Distribution

metacluster-1.2.0-py3-none-any.whl (2.7 MB view details)

Uploaded Python 3

File details

Details for the file metacluster-1.2.0.tar.gz.

File metadata

  • Download URL: metacluster-1.2.0.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for metacluster-1.2.0.tar.gz
Algorithm Hash digest
SHA256 66193a59efca7964066915dd8e070a371315ecf3173f4f39ba3e3f0881065830
MD5 fe7dd8a227da6e4dba5a6060128db0be
BLAKE2b-256 6c9f06720fac21a2d771520d331ddc47bbc3a29945f78c855b98b4d004910681

See more details on using hashes here.

File details

Details for the file metacluster-1.2.0-py3-none-any.whl.

File metadata

  • Download URL: metacluster-1.2.0-py3-none-any.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for metacluster-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4c213d99443331821c1e3d6dc0e0cea6e815bc317c1930351c95a4a3db13cc47
MD5 15b3a9abaa5dd3edf6126703f2bd6593
BLAKE2b-256 3f6edc91723c6798da5960ee6c8ee2ef314976ace1d28875d565fc724da51ea6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page