Skip to main content

Python Client for European XFEL Metadata Catalogue Web App available at https://in.xfel.eu/metadata

Project description

MyMdC is the Web App design for Data Management at European XFEL.

This library (metadata_client) is a client for the RESTful APIs exposed by the European XFEL Metadata Catalogue Web Application - myMdC (https://in.xfel.eu/metadata).

Repository:

Dependencies:

Installation

Python project

  1. Install requirements, if never done before

1.1. For OS X distributions:

sudo port install python35
sudo port

sudo port select --set python3 python35

sudo port install py35-pip
sudo port select --set pip pip35

sudo port install py35-nose
sudo port select --set nosetests nosetests-3.5

pip install pycodestyle

1.2. For Linux distributions:

sudo apt-get update
sudo apt-get install python3.5
  1. Make metadata_client library available in your python environment

2.1. Install it via pip:

# Install dependencies from local wheels files
pip install --no-index --upgrade --find-links ./external_dependencies/*

# Install dependencies from the pypi
pip install -r requirements.txt

Or as a normal python project (via .egg file):

python setup.py install
python setup.py install --user

Running this command the “compiled” metadata_client-3.0.2-py3.4.egg file is generated under the current Python installation site-packages folder.

or. Install it as a normal python project (via Wheel):

python setup.py bdist_wheel

Running this command 2 folders are generated under the current Python installation site-packages folder:

  • metadata_client with the sources;

  • metadata_client-3.0.2.dist-info/ with Wheels configuration files.

  1. To identify your Python site-packages folder run:

    python -c "from distutils.sysconfig import get_python_lib; print(get_python_lib())"

Usage

To use this project you need to import it.

If you want interact directly with API methods you should import MetadataClientApi class:

from metadata_client.metadata_client_api import MetadataClientApi

If you want interact with Model classes you should import MetadataClient class:

from metadata_client.metadata_client import MetadataClient

Or import everything:

import metadata_client
  1. Connection to the MdC (Metadata Catalog):

    from metadata_client.metadata_client import MetadataClient
    
    # Necessary configuration variables to establish a connection
    user_id = '201ed15ff071a63e76cb0b91a1ab17b36d5f92d24b6df4497aa646e39c46a324'
    user_secret = 'a8ae80f5e96531f19bf2d2b6102f5a537196aca44a673ad36533310e07529757'
    user_email = 'luis.maia@xfel.eu'
    #
    metadata_web_app_url = 'https://in.xfel.eu/dev_metadata'
    token_url = 'https://in.xfel.eu/dev_metadata/oauth/token'
    refresh_url = 'https://in.xfel.eu/dev_metadata/oauth/token'
    auth_url = 'https://in.xfel.eu/dev_metadata/oauth/authorize'
    scope = ''
    base_api_url = 'https://in.xfel.eu/dev_metadata/api/'
    
    # Generate the connection
    client_conn = MetadataClient(client_id=user_id,
                                 client_secret=user_secret,
                                 user_email=user_email,
                                 token_url=token_url,
                                 refresh_url=refresh_url,
                                 auth_url=auth_url,
                                 scope=scope,
                                 base_api_url=base_api_url)
  2. Interaction with the MdC (Metadata Catalog):

2.1 Example data_group_types:

all_group_types = MetadataClient.get_all_data_group_types(client_conn)

all_group_types
# >>> {'success': True,
#      'data': [{'description': '', 'identifier': 'RAW', 'name': 'Raw', 'flg_available': True, 'id': 1},
#               {'description': '', 'identifier': 'CAL', 'name': 'Calibration', 'flg_available': True, 'id': 2},
#               {'description': '', 'identifier': 'PROC', 'name': 'Processed', 'flg_available': True, 'id': 3},
#               {'description': '', 'identifier': 'REDU', 'name': 'Reduced', 'flg_available': True, 'id': 4},
#               {'description': '', 'identifier': 'SIM', 'name': 'Simulation', 'flg_available': True, 'id': 5},
#               {'description': '', 'identifier': 'UNK', 'name': 'Unknown', 'flg_available': True, 'id': 6}],
#      'app_info': {},
#      'info': 'Got data_group_type successfully'}

all_group_types['success']
# >>> True

all_group_types['data'][0]
# >>> {'description': '', 'identifier': 'RAW', 'name': 'Raw', 'flg_available': True, 'id': 1}

all_group_types['data'][0]['name']
# >>> 'Raw'

2.2 Example instruments:

all_xfel_instruments = MetadataClient.get_all_xfel_instruments(client_conn)

>>> for instrument in all_xfel_instruments['data']:
...   print('id = {0} | name = {1}'.format(instrument['id'], instrument['name']))
...
# id = -1 | name = test-instrument
# id = 1 | name = SPB/SFX SASE1
# id = 2 | name = FXE SASE1
# id = 3 | name = SQS SASE3
# id = 4 | name = SCS SASE3
# id = 5 | name = MID SASE2
# id = 6 | name = HED SASE2
# id = 7 | name = Hera South Detector Test Stand
# id = 8 | name = SASE1 Test Stand
# id = 9 | name = SASE2 Test Stand
# id = 10 | name = SASE3 Test Stand

2.3 Get instrument active proposal:

active_proposal = MetadataClient.get_active_proposal_by_instrument(client_conn, 1)

2.4 Register Run replica:

# (e.g. proposal_number == 1234)
# (e.g. proposal_number == 12)
# (e.g. repository_identifier == 'XFEL_GPFS_OFFLINE_RAW_CC')

resp = MetadataClient.register_run_replica(client_conn,
                                           proposal_number,
                                           run_number,
                                           repository_identifier)
# resp = {'success': True,
#         'info': 'Run replica registered successfully',
#         'data': {'experiment_id': '-1',
#                  'sample_id': '-1',
#                  'run_id': '1588',
#                  'data_group_id': '777'},
#         'app_info': {}}

2.5 Unregister Run replica:

# (e.g. proposal_number == 1234)
# (e.g. proposal_number == 12)
# (e.g. repository_identifier == 'XFEL_GPFS_OFFLINE_RAW_CC')

resp = MetadataClient.unregister_run_replica(client_conn,
                                             proposal_number,
                                             run_number,
                                             repository_identifier)
# resp = {'success': True,
#         'info': 'Run replica unregistered successfully',
#         'data': {'data_group_id': '-1',
#                  'repository_id': '1',
#                  'flg_available': 'false'},
#         'app_info': {}}

For additional examples, please take a look in the tests/ folder.

Development & Testing

When developing, and before commit changes, please validate that:

  1. All tests continue passing successfully (to validate that run nosetests):

    # Go to the source code directory
    cd metadata_client
    
    # Run all tests
    nosetests .
    
    # Run all tests and get information about coverage for all files inside metadata_client package
    pip install python-dateutil
    pip install nose-cov
    nosetests --with-cov --cover-erase --cover-inclusive --cov-report term-missing --cov metadata_client
    
    # Run all tests with xunit
    nosetests --where=./metadata_client/ --with-xunit --xunit-file=pythonTest.xml
    
    # If you don't want use nosetests you can simply run the test class
    python metadata_client/tests/metadata_client_test.py
  2. Code keeps respecting pycodestyle code conventions (to validate that run pycodestyle):

    pycodestyle .
  3. To generate all the wheels files for the dependencies, execute:

    # Generate Wheels to its dependencies
    pip wheel --wheel-dir=./external_dependencies -r requirements.txt
    pip wheel --wheel-dir=./external_dependencies --find-links=./external_dependencies -r requirements.txt
    
    # Generate Wheels to itself and dependencies
    pip wheel --wheel-dir=./external_dependencies .
    pip wheel --wheel-dir=./external_dependencies --find-links=./external_dependencies .

Guarantee that you have the desired versions in requirements.txt and setup.py files.

Registering library on https://pypi.org

To register this python library, the following steps are necessary:

# Install twine
python -m pip install --upgrade twine

# Generates egg file in the dist/ folder
python setup.py install

# Upload new version
twine upload dist/*

# In case a teste is necessary, it is possible to test it against test.pypi.org
twine upload --repository-url https://test.pypi.org/legacy/ dist/* --verbose

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

metadata_client-3.0.2-py3.6.egg (239.5 kB view details)

Uploaded Source

metadata_client-3.0.2-py3-none-any.whl (106.8 kB view details)

Uploaded Python 3

File details

Details for the file metadata_client-3.0.2-py3.6.egg.

File metadata

  • Download URL: metadata_client-3.0.2-py3.6.egg
  • Upload date:
  • Size: 239.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.19.5 CPython/3.6.1

File hashes

Hashes for metadata_client-3.0.2-py3.6.egg
Algorithm Hash digest
SHA256 23442d186ab586a280867d9bf2607cdb6d97b54cbc0a30820d6f62179bec8917
MD5 c48ed4782d48e82edf6f2107ed75ce4f
BLAKE2b-256 147610ff4b533509886f35bd073f3afaa30f574c2008079a3f0c42275a22e52f

See more details on using hashes here.

File details

Details for the file metadata_client-3.0.2-py3-none-any.whl.

File metadata

  • Download URL: metadata_client-3.0.2-py3-none-any.whl
  • Upload date:
  • Size: 106.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.19.5 CPython/3.6.1

File hashes

Hashes for metadata_client-3.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 863992ae88eed4f14f27a956856969bd8711fe09f77d749f481a389820f61d7a
MD5 a6765f112f84d96ca7619bbca4767f63
BLAKE2b-256 f25d1ba3b3efa71e7a23d096e6de1ab6b5230ef8b77fa3e363a42c7a62e82023

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page