Skip to main content

An EXPERIMENTAL checkpoint decorator for Metaflow

Project description

Metaflow Checkpoint

Imagine running a machine learning training job or any data processing task that takes hours or even days to complete. In such scenarios, you don't want failures or collaboration complexities to force you to start over and lose all the progress made. This is where Metaflow's new decorators—@checkpoint, @model, and @huggingface_hub—come into play. These decorators are specifically designed to address these challenges by simplifying checkpointing, model management, and efficient loading of external models, ensuring that your long-running jobs can be resumed seamlessly after a failure and that models and checkpoints are properly versioned in multi-user environments.

This repository introduces three new decorators for Metaflow that address these challenges:

  • @checkpoint: Simplifies saving and reloading checkpoints within your Metaflow flows.
  • @huggingface_hub: Enables efficient loading and caching of large models from Hugging Face Hub.
  • @model: Allows for easy saving and loading of models created during your Metaflow flows.

Examples for these decorators can be found in this repository.

Features

@checkpoint Decorator

The @checkpoint decorator alleviates the pain points associated with saving and reloading the state of your program (a Metaflow @step) in Metaflow flows. It also handles version control in multi-user settings by isolating checkpoints per user and run. Whether it's a checkpoint created by a machine learning model or intermediate data required in case of crashes, this decorator simplifies state management and failure recovery.

  • Checkpointing: Save the state of your @step at designated points.
  • Seamless Recovery: Restart your job from the last checkpoint upon retries without any manual intervention.
  • User Isolation: Checkpoints are managed per user to prevent overwriting in collaborative environments.
  • Ease of Use: Minimal code changes required to implement checkpointing.

@huggingface_hub Decorator

The @huggingface_hub decorator allows you to load large models from Hugging Face Hub and cache them for increased performance benefits. It also ensures that models are versioned and managed appropriately in multi-user environments.

  • Efficient Model Loading: Load models on-the-fly from Hugging Face Hub.
  • Caching Mechanism: Cache models locally to avoid redundant downloads.
  • Version Control: Manages different versions of models to prevent conflicts.
  • Integration with Metaflow: Easily incorporate models across your Metaflow flows.

@model Decorator

The @model decorator provides a trivial way to save and load models/checkpoints created as part of your Metaflow flow.

  • Simplified Model Loading: Automatically load models based on references and identifiers created by decorators such as @model/@checkpoint/@huggingface_hub.
  • Model Identity: Associates a uniquie identity to models so that there is clear distinction between different versions making it easy to track their lineage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metaflow_checkpoint-0.1.1.tar.gz (55.0 kB view details)

Uploaded Source

Built Distribution

metaflow_checkpoint-0.1.1-py2.py3-none-any.whl (76.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file metaflow_checkpoint-0.1.1.tar.gz.

File metadata

  • Download URL: metaflow_checkpoint-0.1.1.tar.gz
  • Upload date:
  • Size: 55.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for metaflow_checkpoint-0.1.1.tar.gz
Algorithm Hash digest
SHA256 bf6341da6284a6a049771a0cd3396c1ac42d6b8561490554d3138fe3089f7f84
MD5 3265c451814488bc1ae54d57395d0d64
BLAKE2b-256 242f13185ae7cea2272cd65c542548290b8d5b17f6001369ef35a25e28f38425

See more details on using hashes here.

File details

Details for the file metaflow_checkpoint-0.1.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for metaflow_checkpoint-0.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 6c3e70d118b5da33c40fddf3eeb49151d8fb3fac57f0db5b88cf1826c6f01fed
MD5 752bbeb6edd78c2f68d515e648971c11
BLAKE2b-256 825d82edbd3835381e73dc62436d1f441dd2b844a4f10e1b3a5cd1f507eacfcd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page