MetaGym: environments for benchmarking Reinforcement Learning and Meta Reinforcement Learning
Project description
MetaGym
MetaGym provides abundant environments for benchmarking Reinforcement Learning and Meta Reinforcement Learning
Environments Updating
-
LiftSim:Simulator for Evelvator Dispatching (Sep, 2019)
-
Quadrotor: 3D Quadrotor simulator for different tasks (Mar, 2020)
-
Quadrupedal: Quadrupedal robot adapting to different terrains (Seq, 2021)
-
MetaMaze: Meta maze environment for 3D visual navigation (Oct, 2021)
-
Navigator2D: Simple 2D navigator meta environment (Oct, 2021)
-
MetaLocomotion: Locomotion simulator with diverse geometries (June, 2022)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
metagym-0.1.1.tar.gz
(132.4 kB
view hashes)
Built Distribution
Close
Hashes for metagym-0.1.1-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3108181cb8ab03ed9fb12a822365c4c5d770af0c942aee5631efb26205e34b22 |
|
MD5 | 6b6ec3c90f611412babea61131e0f952 |
|
BLAKE2b-256 | 3cf9d158b069c401dff5d0257222d6ee4dcc1085b0a56fc73825b098e8ef07a2 |