Skip to main content

MetaGym: environments for benchmarking Reinforcement Learning and Meta Reinforcement Learning

Project description

MetaGym

MetaGym provides abundant environments for benchmarking Reinforcement Learning and Meta Reinforcement Learning

Environments Updating

  • LiftSim:Simulator for Evelvator Dispatching (Sep, 2019)

  • Quadrotor: 3D Quadrotor simulator for different tasks (Mar, 2020)

  • Quadrupedal: Quadrupedal robot adapting to different terrains (Seq, 2021)

  • MetaMaze: Meta maze environment for 3D visual navigation (Oct, 2021)

  • Navigator2D: Simple 2D navigator meta environment (Oct, 2021)

  • MetaLocomotion: Locomotion simulator with diverse geometries (June, 2022)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metagym-0.1.1.tar.gz (132.4 kB view details)

Uploaded Source

Built Distribution

metagym-0.1.1-py2.py3-none-any.whl (17.9 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file metagym-0.1.1.tar.gz.

File metadata

  • Download URL: metagym-0.1.1.tar.gz
  • Upload date:
  • Size: 132.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for metagym-0.1.1.tar.gz
Algorithm Hash digest
SHA256 5223899d04b9a9678b16daedc03e56af60d8e007836e417a9206e169aaee2f64
MD5 4abb86ab778772cee8519b71ff8c4a05
BLAKE2b-256 3d15305856c4818a3f5b10f8cbcd8fcf0d4d79b5146ea83aaea61a215c0544ad

See more details on using hashes here.

File details

Details for the file metagym-0.1.1-py2.py3-none-any.whl.

File metadata

  • Download URL: metagym-0.1.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 17.9 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for metagym-0.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3108181cb8ab03ed9fb12a822365c4c5d770af0c942aee5631efb26205e34b22
MD5 6b6ec3c90f611412babea61131e0f952
BLAKE2b-256 3cf9d158b069c401dff5d0257222d6ee4dcc1085b0a56fc73825b098e8ef07a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page