Skip to main content

Multilingual natural language tools, wrapping NLTK and other systems.

Project description

metanl contains wrappers for a few different NLP tools that are used for various purposes in various languages. It works in Python 2.7 or Python >= 3.3.

It does not provide a single abstraction that works in every language. That’s hard and nobody agrees on how to do it. These tools have different purposes and different strengths, and combining them into one multi-tool would probably be futile.

What metanl provides is ways to access these different tools in concise Python code. It doesn’t try to hide them under an abstraction, but it does smooth over their rough edges.

metanl is written and maintained by Rob Speer, Lance Nathan, and Andrew Lin at Luminoso (

## metanl.token_utils

Utilities for working with tokens:

  • tokenize splits strings into tokens, using NLTK.

  • untokenize rejoins tokens into a correctly-spaced string, using ad-hoc rules that aim to invert what NLTK does.

  • un_camel_case splits a CamelCased string into tokens.

These functions make assumptions that work best in English, and work reasonably in other Western languages, and fail utterly in languages that don’t use spaces.

## metanl.nltk_morphy

nltk_morphy is a lemmatizer (a stemmer with principles). It enables you to reduce words to their root form in English, using the Morphy algorithm that’s built into WordNet, together with NLTK’s part of speech tagger.

Morphy works best with a known part of speech. In fact, the way it works in NLTK is pretty bad if you don’t specify the part of speech. The nltk_morphy wrapper provides:

  • An alignment between the POS tags that nltk.pos_tag outputs, and the input that Morphy expects

  • A strategy for tagging words whose part of speech is unknown

  • A small list of exceptions, for cases where Morphy returns an unintuitive or wrong result

## metanl.extprocess

Sometimes, the best available NLP tools are written in some other language besides Python. They may not provide a reasonable foreign function interface. What they do often provide is a command-line utility.

metanl.extprocess provides abstractions over utilities that take in natural language, and output a token-by-token analysis. This is used by two other modules in metanl.

### metanl.freeling

FreeLing is an NLP tool that can analyze many European languages, including English, Spanish, Italian, Portuguese, Welsh, and Russian. This module allows you to run FreeLing in a separate process, and use its analysis results in Python.

### metanl.mecab

In Japanese, NLP analyzers are particularly important, because without one you don’t even know where to split words.

MeCab is the most commonly used analyzer for Japanese text. This module runs MeCab in an external process, allowing you to get its complete analysis results, or just use it to tokenize or lemmatize text.

As part of MeCab’s operation, it outputs the phonetic spellings of the words it finds, in kana. We use this to provide a wrapper function that can romanize any Japanese text.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metanl-1.0b2.tar.gz (17.5 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page