METAS B LEAST is a Python implementation of the B LEAST program of the ISO 6143:2001 norm
Project description
METAS B LEAST
METAS B LEAST is a Python implementation of the B LEAST program of the ISO 6143:2001 norm. The derivations of the different fit functions have been explicitly programmed, see metas_b_lest.py. The program has been verified against METAS UncLib which is using automatic differentiation.
Examples
Take a look at the following code example for the usage of the METAS B LEAST Python package:
from metas_b_least import *
# Calibration and measurement data
cal_data = b_read_cal_data(os.path.join(data_dir, 'b_least_1_data_cal.txt'))
meas_data = b_read_meas_data(os.path.join(data_dir, 'b_least_1_data_meas.txt'))
b_disp_cal_data(cal_data)
# Fit coefficients of the fit function using the calibration data
b, b_cov, b_res = b_least(cal_data, b_linear_func)
b_disp_cal_results(b, b_cov, b_res)
# Evaluate the fit function with the coefficients at the measurement data
x, x_cov = b_eval(meas_data, b, b_cov, b_linear_func)
b_disp_meas_results(x, x_cov, meas_data)
See as well the following Jupyter Notebook examples:
Functions
Input Functions
b_read_cal_data reads calibration data from tabular separated text file where the first column are the x
values, the second column are the standard uncertainties of x
, the third column are the y
values and the forth column are the standard uncertainties of y
.
b_read_meas_data reads measurement data from tabular separated text file where the first column are the y
values and the second column are the standard uncertainties of y
.
Processing Functions
b_least fits the coefficients b
of the fit function func
using the calibration data cal_data
.
b_eval evaluates the fit function func
with the coefficients b
at the measurement data meas_data
.
The following fit functions are available:
Name | Function |
---|---|
b_linear_func | $$x = b_0 + b_1y$$ |
b_second_order_poly | $$x = b_0 + b_1y + b_2y^2$$ |
b_third_order_poly | $$x = b_0 + b_1y + b_2y^2 + b_3y^3$$ |
b_power_func | $$x = b_0 + b_1y^{(1 + b_2)}$$ |
b_exp_func | $$x = b_0 + b_1e^{b_2y}$$ |
Output Functions
b_disp_cal_data displays the calibration data cal_data
.
b_disp_cal_results displays the coefficients b
, the uncertainties of b
, the covariance matrix of b
, the residual and the maximum absolute value of weighted deviations.
b_disp_meas_results displays the measurement data x
and meas_data
.
Requirements
Michael Wollensack METAS - 28.10.2024
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file metas_b_least-0.1.0.tar.gz
.
File metadata
- Download URL: metas_b_least-0.1.0.tar.gz
- Upload date:
- Size: 7.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e8d9ed398d4a358c13a08ac965acc2f1f736e34d7fac7521fc1dba3a9c2e10d1 |
|
MD5 | cc867b9e386ab6a9e8cb1a2502122cc1 |
|
BLAKE2b-256 | 261a404fbaeaa11a5d5d1f8781dbaf22d24fbba6ec8a47b56d7861f572b7a4eb |
File details
Details for the file metas_b_least-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: metas_b_least-0.1.0-py3-none-any.whl
- Upload date:
- Size: 11.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8af3ae73b56e2e8e75c7d65cd4eafa4b1dfd5936b953e80470365ef443bda42e |
|
MD5 | a53e7ed75c16ad4fe092a6dc7a6aa9c8 |
|
BLAKE2b-256 | 29c7e1a483af3bd400aaa1940ec3334d89905f8e82d9bd778328b9d2a413ea18 |