Skip to main content

METAS B LEAST is a Python implementation of the B LEAST program of the ISO 6143:2001 norm

Project description

METAS B LEAST

METAS B LEAST is a Python implementation of the B LEAST program of the ISO 6143:2001 norm. The derivations of the different fit functions have been explicitly programmed, see metas_b_lest.py. The program has been verified against METAS UncLib which is using automatic differentiation.

Examples

Take a look at the following code example for the usage of the METAS B LEAST Python package:

from metas_b_least import *

# Calibration and measurement data
cal_data = b_read_cal_data(os.path.join(data_dir, 'b_least_1_data_cal.txt'))
meas_data = b_read_meas_data(os.path.join(data_dir, 'b_least_1_data_meas.txt'))
b_disp_cal_data(cal_data)

# Fit coefficients of the fit function using the calibration data
b, b_cov, b_res = b_least(cal_data, b_linear_func)
b_disp_cal_results(b, b_cov, b_res)

# Evaluate the fit function with the coefficients at the measurement data
x, x_cov = b_eval(meas_data, b, b_cov, b_linear_func)
b_disp_meas_results(x, x_cov, meas_data)

See as well the following Jupyter Notebook examples:

Functions

Input Functions

b_read_cal_data reads calibration data from tabular separated text file where the first column are the x values, the second column are the standard uncertainties of x, the third column are the y values and the forth column are the standard uncertainties of y.

b_read_meas_data reads measurement data from tabular separated text file where the first column are the y values and the second column are the standard uncertainties of y.

Processing Functions

b_least fits the coefficients b of the fit function func using the calibration data cal_data.

b_eval evaluates the fit function func with the coefficients b at the measurement data meas_data.

The following fit functions are available:

Name Function
b_linear_func $$x = b_0 + b_1y$$
b_second_order_poly $$x = b_0 + b_1y + b_2y^2$$
b_third_order_poly $$x = b_0 + b_1y + b_2y^2 + b_3y^3$$
b_power_func $$x = b_0 + b_1y^{(1 + b_2)}$$
b_exp_func $$x = b_0 + b_1e^{b_2y}$$

Output Functions

b_disp_cal_data displays the calibration data cal_data.

b_disp_cal_results displays the coefficients b, the uncertainties of b, the covariance matrix of b, the residual and the maximum absolute value of weighted deviations.

b_disp_meas_results displays the measurement data x and meas_data.

Requirements


Michael Wollensack METAS - 28.10.2024

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metas_b_least-0.1.0.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

metas_b_least-0.1.0-py3-none-any.whl (11.8 kB view details)

Uploaded Python 3

File details

Details for the file metas_b_least-0.1.0.tar.gz.

File metadata

  • Download URL: metas_b_least-0.1.0.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6

File hashes

Hashes for metas_b_least-0.1.0.tar.gz
Algorithm Hash digest
SHA256 e8d9ed398d4a358c13a08ac965acc2f1f736e34d7fac7521fc1dba3a9c2e10d1
MD5 cc867b9e386ab6a9e8cb1a2502122cc1
BLAKE2b-256 261a404fbaeaa11a5d5d1f8781dbaf22d24fbba6ec8a47b56d7861f572b7a4eb

See more details on using hashes here.

File details

Details for the file metas_b_least-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: metas_b_least-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 11.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6

File hashes

Hashes for metas_b_least-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8af3ae73b56e2e8e75c7d65cd4eafa4b1dfd5936b953e80470365ef443bda42e
MD5 a53e7ed75c16ad4fe092a6dc7a6aa9c8
BLAKE2b-256 29c7e1a483af3bd400aaa1940ec3334d89905f8e82d9bd778328b9d2a413ea18

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page