Skip to main content

METAS B LEAST is a Python implementation of the B LEAST program of the ISO 6143:2001 norm

Project description

METAS B LEAST

METAS B LEAST is a Python implementation of the B LEAST program of the ISO 6143:2001 norm. The derivations of the different fit functions have been explicitly programmed, see metas_b_lest.py. The program has been verified against METAS UncLib which is using automatic differentiation.

The following link will launch an interactive Python environment where you can you use METAS B LEAST:

Binder

Examples

Take a look at the following code example for the usage of the METAS B LEAST Python package:

from metas_b_least import *

# Calibration and measurement data
cal_data = b_read_cal_data(os.path.join(data_dir, 'b_least_1_data_cal.txt'))
meas_data = b_read_meas_data(os.path.join(data_dir, 'b_least_1_data_meas.txt'))
b_disp_cal_data(cal_data)

# Fit coefficients of the fit function using the calibration data
b, b_cov, b_res = b_least(cal_data, b_linear_func)
b_disp_cal_results(b, b_cov, b_res)

# Evaluate the fit function with the coefficients at the measurement data
x, x_cov = b_eval(meas_data, b, b_cov, b_linear_func)
b_disp_meas_results(x, x_cov, meas_data)

# Plot calibration data, measurement data and fit function
b_plot(cal_data, meas_data, b, b_cov, b_linear_func)

See as well the following Jupyter Notebooks:

Functions

Input Functions

b_read_cal_data reads calibration data from tabular separated text file where the first column are the x values, the second column are the standard uncertainties of x, the third column are the y values and the forth column are the standard uncertainties of y.

b_read_meas_data reads measurement data from tabular separated text file where the first column are the y values and the second column are the standard uncertainties of y.

Processing Functions

b_least fits the coefficients b of the fit function func using the calibration data cal_data.

b_eval evaluates the fit function func with the coefficients b at the measurement data meas_data.

The following fit functions are available:

Name Function
b_linear_func $$x = b_0 + b_1y$$
b_second_order_poly $$x = b_0 + b_1y + b_2y^2$$
b_third_order_poly $$x = b_0 + b_1y + b_2y^2 + b_3y^3$$
b_power_func $$x = b_0 + b_1y^{(1 + b_2)}$$
b_exp_func $$x = b_0 + b_1e^{b_2y}$$

Output Functions

b_disp_cal_data displays the calibration data cal_data.

b_disp_cal_results displays the coefficients b, the uncertainties of b, the covariance matrix of b, the residual and the maximum absolute value of weighted deviations.

b_disp_meas_results displays the measurement data x and meas_data.

b_plot plots the calibration data cal_data, the measurement data meas_data and the fit function using the coefficients b.

Source Code

https://github.com/wollmich/metas-b-least/

Releases

https://pypi.org/project/metas-b-least/

Requirements


Michael Wollensack METAS - 04.11.2024

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metas_b_least-0.2.0.tar.gz (197.8 kB view details)

Uploaded Source

Built Distribution

metas_b_least-0.2.0-py3-none-any.whl (200.5 kB view details)

Uploaded Python 3

File details

Details for the file metas_b_least-0.2.0.tar.gz.

File metadata

  • Download URL: metas_b_least-0.2.0.tar.gz
  • Upload date:
  • Size: 197.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6

File hashes

Hashes for metas_b_least-0.2.0.tar.gz
Algorithm Hash digest
SHA256 fae53bf47219c6f58c409445e365d78a837f30d3895124d6bd64b8eecc9ab616
MD5 f0ddb51bbf0a6671eb01bac5a30744b7
BLAKE2b-256 5408c4f25bf72f7b78c82791c7f8313696f7b576fb5b36b292bd5c3b59a86e73

See more details on using hashes here.

File details

Details for the file metas_b_least-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: metas_b_least-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 200.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6

File hashes

Hashes for metas_b_least-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 50d958f2e56f9687729048d8363144b2e4fb528a72b176019e94d2129a9f778f
MD5 3ea8f9cef3347430ab942c146b4c6925
BLAKE2b-256 835baa6a0d41db1dcfac3f31b249f2e977928451936e9a1c432872cd8e0542ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page