MetaSeg: Packaged version of the Segment Anything repository
Project description
This repo is a packaged version of the segment-anything model.
Installation
pip install metaseg
Usage
from metaseg import SegAutoMaskPredictor, SegManualMaskPredictor
# If gpu memory is not enough, reduce the points_per_side and points_per_batch.
# For image
results = SegAutoMaskPredictor().image_predict(
source="image.jpg",
model_type="vit_l", # vit_l, vit_h, vit_b
points_per_side=16,
points_per_batch=64,
min_area=0,
output_path="output.jpg",
show=True,
save=False,
)
# For video
results = SegAutoMaskPredictor().video_predict(
source="video.mp4",
model_type="vit_l", # vit_l, vit_h, vit_b
points_per_side=16,
points_per_batch=64,
min_area=1000,
output_path="output.mp4",
)
# For manuel box and point selection
# For image
results = SegManualMaskPredictor().image_predict(
source="image.jpg",
model_type="vit_l", # vit_l, vit_h, vit_b
input_point=[[100, 100], [200, 200]],
input_label=[0, 1],
input_box=[100, 100, 200, 200], # or [[100, 100, 200, 200], [100, 100, 200, 200]]
multimask_output=False,
random_color=False,
show=True,
save=False,
)
# For video
results = SegManualMaskPredictor().video_predict(
source="video.mp4",
model_type="vit_l", # vit_l, vit_h, vit_b
input_point=[0, 0, 100, 100],
input_label=[0, 1],
input_box=None,
multimask_output=False,
random_color=False,
output_path="output.mp4",
)
SAHI + Segment Anything
pip install sahi metaseg
from metaseg.sahi_predict import SahiAutoSegmentation, sahi_sliced_predict
image_path = "image.jpg"
boxes = sahi_sliced_predict(
image_path=image_path,
detection_model_type="yolov5", # yolov8, detectron2, mmdetection, torchvision
detection_model_path="yolov5l6.pt",
conf_th=0.25,
image_size=1280,
slice_height=256,
slice_width=256,
overlap_height_ratio=0.2,
overlap_width_ratio=0.2,
)
SahiAutoSegmentation().image_predict(
source=image_path,
model_type="vit_b",
input_box=boxes,
multimask_output=False,
random_color=False,
show=True,
save=False,
)
FalAI(Cloud GPU) + Segment Anything
pip install metaseg fal_serverless
fal-serverless auth login
# For Auto Mask
from metaseg import falai_automask_image
image = falai_automask_image(
image_path="image.jpg",
model_type="vit_b",
points_per_side=16,
points_per_batch=32,
min_area=0,
)
image.show() # Show image
image.save("output.jpg") # Save image
# For Manual Mask
from metaseg import falai_manuelmask_image
image = falai_manualmask_image(
image_path="image.jpg",
model_type="vit_b",
input_point=[[100, 100], [200, 200]],
input_label=[0, 1],
input_box=[100, 100, 200, 200], # or [[100, 100, 200, 200], [100, 100, 200, 200]],
multimask_output=False,
random_color=False,
)
image.show() # Show image
image.save("output.jpg") # Save image
Extra Features
- Support for Yolov5/8, Detectron2, Mmdetection, Torchvision models
- Support for video and web application(Huggingface Spaces)
- Support for manual single multi box and point selection
- Support for pip installation
- Support for SAHI library
- Support for FalAI
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
metaseg-0.7.8.tar.gz
(39.2 kB
view details)
Built Distribution
metaseg-0.7.8-py3-none-any.whl
(47.9 kB
view details)
File details
Details for the file metaseg-0.7.8.tar.gz
.
File metadata
- Download URL: metaseg-0.7.8.tar.gz
- Upload date:
- Size: 39.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d36c7638439cbfd92fafa0649cc77735be1799e1fa1c74497e23e9e3d7011ad2 |
|
MD5 | 2bae95f50f87a9fa3565ea7e58ed55a1 |
|
BLAKE2b-256 | 399465bc228f518bcc4839e8432802c6d53431a44c4bd771b270bc090eabf663 |
File details
Details for the file metaseg-0.7.8-py3-none-any.whl
.
File metadata
- Download URL: metaseg-0.7.8-py3-none-any.whl
- Upload date:
- Size: 47.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d3706d5936952a64a144baaf900c275f630b9c6f05222fa50087f7ede32a2989 |
|
MD5 | 07fff9002e9318162ffd381fd3c5e2b3 |
|
BLAKE2b-256 | bcdb1f9944d64793d1aab9aa279fb833be2669ee3a5ec9233fd8349858e2bcd7 |