Skip to main content

No project description provided

Project description

MetaSeg: Packaged version of the Segment Anything repository

teaser
downloads pypi version HuggingFace Spaces

This repo is a packaged version of the segment-anything model.

Installation

pip install metaseg

Usage

from metaseg import SegAutoMaskPredictor, SegManualMaskPredictor

# If gpu memory is not enough, reduce the points_per_side and points_per_batch.

# For image

results = SegAutoMaskPredictor().image_predict(
    source="image.jpg",
    model_type="vit_l", # vit_l, vit_h, vit_b
    points_per_side=16, 
    points_per_batch=64,
    min_area=0,
    output_path="output.jpg",
    show=True,
    save=False,
)

# For video

results = SegAutoMaskPredictor().video_predict(
    source="video.mp4",
    model_type="vit_l", # vit_l, vit_h, vit_b
    points_per_side=16, 
    points_per_batch=64,
    min_area=1000,
    output_path="output.mp4",
)

# For manuel box and point selection

results = SegManualMaskPredictor().image_predict(
    source="image.jpg",
    model_type="vit_l", # vit_l, vit_h, vit_b
    input_point=[[100, 100], [200, 200]],
    input_label=[0, 1],
    input_box=[100, 100, 200, 200], # or [[100, 100, 200, 200], [100, 100, 200, 200]]
    multimask_output=False,
    random_color=False,
    show=True,
    save=False,
)

SAHI + Segment Anything

from metaseg import sahi_sliced_predict, SahiAutoSegmentation

image_path = "test.jpg"
boxes = sahi_sliced_predict(
    image_path=image_path,
    detection_model_type="yolov5", #yolov8, detectron2, mmdetection, torchvision
    detection_model_path="yolov5l6.pt",
    conf_th=0.25,
    image_size=1280,
    slice_height=256,
    slice_width=256,
    overlap_height_ratio=0.2,
    overlap_width_ratio=0.2,
)

SahiAutoSegmentation().predict(
    source=image_path,
    model_type="vit_b",
    input_box=boxes,
    multimask_output=False,
    random_color=False,
    show=True,
    save=False,
)
teaser

Extra Features

  • Support for Yolov5/8, Detectron2, Mmdetection, Torchvision models
  • Support for video and web application(Huggingface Spaces)
  • Support for manual single multi box and point selection
  • Support for pip installation
  • Support for SAHI library

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metaseg-0.5.2.tar.gz (36.1 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page