Skip to main content

Convert Metaspace datasets to AnnData

Project description

METASPACE converter

Tests Documentation PyPI

Python package to download and convert datasets from the METASPACE knowledge base to common formats for single-cell and spatial omics analysis. Datasets can be directly downloaded to AnnData and SpatialData objects.

AnnData provides is underlying data format of many packages of the scverse such as scanpy for single-cell data analysis and squidpy for spatial omics analysis.

Another supported format that is part of the scverse is SpatialData for storage, alignment, and processing of spatial omics data. This enables users to easily align and integrate METASPACE datasets to other spatial omics modalities.

If you encounter any bugs or have suggestions for new features, please open an issue in the GitHub repository.

Installation

Our package requires python >= 3.9.

You can install the package directly from PyPI:

pip install metaspace-converter

Import package

import metaspace_converter

Short tutorial

The full documentation for the package can be found here: https://metaspace2020.github.io/metaspace-converter/

The METASPACE-converter package is using the python client download datasets from METASPACE. It serves as a wrapper that downloads converts datasets directly to AnnData and SpatialData objects.

If you also need to upload or modify datasets on METASPACE, please check the METASPACE python client documentation.

AnnData

Datasets can be downloaded to AnnData objects using the metaspace_to_anndata function. This allows downstream analysis e.g. with scanpy or squidpy.

Scanpy

from metaspace_converter import metaspace_to_anndata
import scanpy as sc

# Download data and convert to an AnnData object
adata = metaspace_to_anndata(
    dataset_id="2022-08-05_17h28m56s",
    fdr=0.1,
    database=("BraChemDB", "2018-01"),
)

# Visualization with ScanPy
sc.pl.spatial(
    adata,
    # Choose the first ion for visualization
    color=adata.var.index[0],
    img_key=None,
    spot_size=1,
)

Image

Squidpy

Optical images can also be downloaded and save in the object if available. Squidpy allows for an easy overlay of ion image and optical image.

from metaspace_converter import metaspace_to_anndata
import squidpy as sq

# Download dataset with optical background image
adata = metaspace_to_anndata(
    dataset_id="2022-08-05_17h28m56s",
    fdr=0.1,
    database=("BraChemDB", "2018-01"),
    add_optical_image=True,
)

sq.pl.spatial_scatter(
    adata, color=adata.var.index[0], shape="square", img=True, size=15, alpha=0.5
)

Image

Convert AnnData objects to ion image arrays

If you want to work with the ion images as numpy arrays, the function anndata_to_image_array can convert previously downloaded AnnData objects to numpy arrays.

from metaspace_converter import metaspace_to_anndata, anndata_to_image_array

# Download data
adata2 = metaspace_to_anndata(dataset_id="2023-11-14_21h58m39s", fdr=0.1)

ion_images = anndata_to_image_array(adata2)

# 6 ion images of shape 61x78
print(ion_images.shape)
# > (6, 61, 78)

SpatialData

Download to the SpatialData format equally easy and can be done with the metaspace_to_spatialdata function.

Here using a reversed colormap which better represents intense values on bright background.

from metaspace_converter import metaspace_to_spatialdata
import spatialdata_plot  # noqa: Not directly used but extends spatialdata

# Download dataset with optical background image
sdata = metaspace_to_spatialdata(
    dataset_id="2022-08-05_17h28m56s",
    fdr=0.1,
    database=("BraChemDB", "2018-01"),
)

# Workaround: spatialdata-plot currently does not use points transformation
sdata.points["maldi_points"] = sdata.transform_element_to_coordinate_system(
    sdata.points["maldi_points"], "global"
)

(
    sdata.pl.render_images("optical_image")
    .pl.render_points(
        "maldi_points",
        color=sdata.table.var.index[0],
        alpha=1,
        size=2,
        cmap="viridis_r",
    )
    .pl.show(title=sdata.table.var.index[0], coordinate_systems="global")
)

Image

License

Unless specified otherwise in file headers or LICENSE files present in subdirectories, all files are licensed under the Apache 2.0 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metaspace-converter-1.0.1.tar.gz (24.4 kB view details)

Uploaded Source

Built Distribution

metaspace_converter-1.0.1-py3-none-any.whl (26.6 kB view details)

Uploaded Python 3

File details

Details for the file metaspace-converter-1.0.1.tar.gz.

File metadata

  • Download URL: metaspace-converter-1.0.1.tar.gz
  • Upload date:
  • Size: 24.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for metaspace-converter-1.0.1.tar.gz
Algorithm Hash digest
SHA256 f67dd3b7fc8aeb793e1f421eb66260650bdde1c25dfb7628e0af2a68d39322b1
MD5 dc1e57cf3b6c5e2bf27450c6af2261b0
BLAKE2b-256 04ab5ba426a44cd27805394bd6aef76cae801973ef12f941034a208bf51ac4a4

See more details on using hashes here.

File details

Details for the file metaspace_converter-1.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for metaspace_converter-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 81ec82b1edc4e98f28d645b0bec5315e3788ee00d9cfcc18eb003780acf7ffc5
MD5 ddb1625bdae8ecdbea2f53bd631bd16f
BLAKE2b-256 a06bc68596c1ff737d4763f3d1f61954797c1beedba469808d1107555853b8a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page