Skip to main content

Convert Metaspace datasets to AnnData

Project description

METASPACE converter

Tests Documentation PyPI

Python package to download and convert datasets from the METASPACE knowledge base to common formats for single-cell and spatial omics analysis. Datasets can be directly downloaded to AnnData and SpatialData objects.

AnnData is the underlying data format of many packages of the scverse such as scanpy for single-cell data analysis and squidpy for spatial omics analysis.

Another supported format that is part of the scverse is SpatialData for storing, aligning, and processing spatial omics data. This enables users to easily align and integrate METASPACE datasets to other spatial omics modalities.

Additionally, the commonly used colocalization analysis for spatial metabolomics can be performed with the package.

If you encounter any bugs or have suggestions for new features, please open an issue in the GitHub repository.

Installation

Our package requires python >= 3.9.

You can install the package directly from PyPI:

pip install metaspace-converter

Short tutorial

The full documentation for the package can be found here: https://metaspace2020.github.io/metaspace-converter/

The METASPACE-converter package uses the python client to download datasets from METASPACE. It serves as a wrapper that downloads and converts datasets directly to AnnData and SpatialData objects.

If you also need to upload or modify datasets on METASPACE, please check the METASPACE python client documentation.

AnnData

Datasets can be downloaded to AnnData objects using the metaspace_to_anndata function. This allows downstream analysis e.g. with scanpy or squidpy.

Scanpy

from metaspace_converter import metaspace_to_anndata
import scanpy as sc

# Download data and convert to an AnnData object
adata = metaspace_to_anndata(
    dataset_id="2022-08-05_17h28m56s",
    fdr=0.1,
    database=("BraChemDB", "2018-01"),
)

# Visualization with ScanPy
sc.pl.spatial(
    adata,
    # Choose the first ion for visualization
    color=adata.var.index[0],
    img_key=None,
    spot_size=1,
)

Image

Squidpy

Optical images can also be downloaded, if available, and saved in the AnnData object. Squidpy allows for an easy overlay of ion images and the optical image.

from metaspace_converter import metaspace_to_anndata
import squidpy as sq

# Download dataset with optical background image
adata = metaspace_to_anndata(
    dataset_id="2022-08-05_17h28m56s",
    fdr=0.1,
    database=("BraChemDB", "2018-01"),
    add_optical_image=True,
)

sq.pl.spatial_scatter(
    adata, color=adata.var.index[0], shape="square", img=True, size=15, alpha=0.5
)

Image

Convert AnnData objects to ion image arrays

If you want to work with the ion images as numpy arrays, the function anndata_to_image_array can convert previously downloaded AnnData objects to numpy arrays.

from metaspace_converter import metaspace_to_anndata, anndata_to_image_array

# Download data
adata2 = metaspace_to_anndata(dataset_id="2023-11-14_21h58m39s", fdr=0.1)

ion_images = anndata_to_image_array(adata2)

# 20 ion images of shape 130x143
print(ion_images.shape)
# > (20, 130, 143)

SpatialData

Download to the SpatialData format equally easy and can be done with the metaspace_to_spatialdata function.

Here using a reversed colormap which better represents intense values on a bright background.

from metaspace_converter import metaspace_to_spatialdata
import spatialdata_plot  # noqa: Not directly used but extends spatialdata

# Download dataset with optical background image
sdata = metaspace_to_spatialdata(
    dataset_id="2022-08-05_17h28m56s",
    fdr=0.1,
    database=("BraChemDB", "2018-01"),
)

# Workaround: spatialdata-plot currently does not use points transformation
sdata.points["maldi_points"] = sdata.transform_element_to_coordinate_system(
    sdata.points["maldi_points"], "global"
)

(
    sdata.pl.render_images("optical_image")
    .pl.render_points(
        "maldi_points",
        color=sdata.table.var.index[0],
        alpha=1,
        size=2,
        cmap="viridis_r",
    )
    .pl.show(title=sdata.table.var.index[0], coordinate_systems="global")
)

Image

License

Unless specified otherwise in file headers or LICENSE files present in subdirectories, all files are licensed under the Apache 2.0 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metaspace-converter-1.1.1.tar.gz (26.8 kB view details)

Uploaded Source

Built Distribution

metaspace_converter-1.1.1-py3-none-any.whl (30.3 kB view details)

Uploaded Python 3

File details

Details for the file metaspace-converter-1.1.1.tar.gz.

File metadata

  • Download URL: metaspace-converter-1.1.1.tar.gz
  • Upload date:
  • Size: 26.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for metaspace-converter-1.1.1.tar.gz
Algorithm Hash digest
SHA256 6a636899b27bddd1baae4611c0dbe94719af28531b9d6513fd4a1d6c02dd35ac
MD5 72527a2611a62695002e075aa6aa0181
BLAKE2b-256 c340cf6757df689a1b991a9b343a0c43dce1862145f4ffcb1932b6cb001d4d42

See more details on using hashes here.

File details

Details for the file metaspace_converter-1.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for metaspace_converter-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 2528c51857247660b4f84438795dc73910f284681f6f256f2477310f1f14ffa1
MD5 4493cbd9cd35c84aabcd5e0ba8886326
BLAKE2b-256 f74cad3a607579b6e7778cab2b39740b5205dd42a077e60e10bfe63f40232abb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page