quality control meteorological data in a pandas.DataFrame
Project description
meteo-qc
meteo_qc
is a customizable framework for applying quality checks to meteorological
data. The framework can be easily extended by registering custom functions/plugins.
Installation
To install meteo-qc, open an interactive shell and run
pip install meteo-qc
Getting started
Check out the Documentation for detailed information.
Apply the quality control to this csv data called test_data.csv
:
date,temp,pressure_reduced
2022-01-01 10:00:00,1,600
2022-01-01 10:10:00,2,1024
2022-01-01 10:20:00,3,1024
2022-01-01 10:30:00,4,1090
2022-01-01 10:50:00,4,
2022-01-01 11:00:00,,1024
2022-01-01 11:10:00,2,1024
2022-01-01 11:20:00,3,1024
2022-01-01 11:30:00,4,1090
2022-01-01 11:40:00,4,1090
- Read in the data as a
pd.DataFrame
. - Create a
meteo_qc.ColumnMapping
object and use the column names as keys to use the methodadd_group
to add the column to the group (temperature
orpressure
). This can be an existing group or a new group. - Call
meteo_qc.apply_qc
to apply the control to the DataFramedata
using thecolumn_mapping
as a definition for the checks to be applied.
import pandas as pd
import meteo_qc
# read in the data
data = pd.read_csv('test_data.csv', index_col=0, parse_dates=True)
# map the columns to groups
column_mapping = meteo_qc.ColumnMapping()
column_mapping['temp'].add_group('temperature')
column_mapping['pressure_reduced'].add_group('pressure')
# apply the quality control
result = meteo_qc.apply_qc(df=data, column_mapping=column_mapping)
print(result)
This will result in this object which can be used to display the result in a
nice way e.g. using an html
template to render it.
{
'columns': defaultdict(<function apply_qc.<locals>.<lambda> at 0x7f9b0edd5480>, {
'temp': {
'results': {
'missing_timestamps': Result(
function='missing_timestamps',
passed=False,
msg='missing 1 timestamps (assumed frequency: 10min)',
data=None,
),
'null_values': Result(
function='null_values',
passed=False,
msg='found 1 values that are null',
data=[[1641034800000, None, True]],
),
'range_check': Result(
function='range_check',
passed=True,
msg=None,
data=None,
),
'spike_dip_check': Result(
function='spike_dip_check',
passed=True,
msg=None,
data=None,
),
'persistence_check': Result(
function='persistence_check',
passed=True,
msg=None,
data=None,
)
},
'passed': False,
},
'pressure_reduced': {
'results': {
'missing_timestamps': Result(
function='missing_timestamps',
passed=False,
msg='missing 1 timestamps (assumed frequency: 10min)',
data=None,
),
'null_values': Result(
function='null_values',
passed=False,
msg='found 1 values that are null',
data=[[1641034200000, None, True]],
),
'range_check': Result(
function='range_check',
passed=False,
msg='out of allowed range of [860 - 1055]',
data=[[1641031200000, 600.0, True], [1641033000000, 1090.0, True], [1641036600000, 1090.0, True], [1641037200000, 1090.0, True]],
),
'spike_dip_check': Result(
function='spike_dip_check',
passed=False,
msg='spikes or dips detected. Exceeded allowed delta of 0.3 / min',
data=[[1641031800000, 1024.0, True], [1641033000000, 1090.0, True], [1641034200000, None, True], [1641036600000, 1090.0, True]],
),
'persistence_check': Result(
function='persistence_check',
passed=True,
msg=None,
data=None,
)
},
'passed': False
}
}),
'passed': False,
'data_start_date': 1641031200000,
'data_end_date': 1641037200000,
}
It is also possible to write and register your own functions if they are not already in the predefined Groups. Please check out the Docs for more information.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file meteo_qc-0.4.2.tar.gz
.
File metadata
- Download URL: meteo_qc-0.4.2.tar.gz
- Upload date:
- Size: 11.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a001934183c947b37ecacee77abbec030a4dc9df3ec54c7264135ec1a6f7e86b |
|
MD5 | 32c34cebef8b07ddd49af8590038f216 |
|
BLAKE2b-256 | 873fe01703f901dc734ff1d5745edbf5abb8d2c61babefab796260f2e5e302a9 |
File details
Details for the file meteo_qc-0.4.2-py2.py3-none-any.whl
.
File metadata
- Download URL: meteo_qc-0.4.2-py2.py3-none-any.whl
- Upload date:
- Size: 12.1 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 63eeb9b8f6af41ba788d56fcdd4c0bcddb54e0c933880b93ccf5a80e891231e3 |
|
MD5 | 754d58533aa3f2f1bcb3bb2748e03382 |
|
BLAKE2b-256 | 9c364a8536423897145b5291596e064708fd47b06a88e47a69c7c670f7ddd236 |