Skip to main content

No project description provided

Project description

About

This libary is developed for recognizing utility meter digits by using neural network classifier (see the image). The neural network is implemented in Pytorch and the details are available in the code.

The datset (from here + self-made images) has 959 images that are classified into eleven categories: digits "0"-"9" and "10" for cases where digit is not recognizable.

Installation

Install from PyPI:

pip install meter-digits-recognizer

Usage

Minimal example:

import cv2
from meter_digits_recognizer import MeterDigitsRecognizer

# Read image, must be in BGR format (standard in OpenCV)
image = cv2.imread("images/0/1_hot_water_meter_20210212_065239.jpg")

# Run recognizer
dr = MeterDigitsRecognizer()
predictions, confidences = dr.run([image]) # Accepts list of images

# Print
print("Prediction %d (confidence %.1f %%)" % (predictions[0], confidences[0]))

Expected output:

Prediction 0 (confidence 100.0 %)

For additional examples see example.ipynb

Traing

To retrain the neural network follow the steps in the train_neural_net.ipynb notebook.

Credits

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

meter-digits-recognizer-0.2.3.tar.gz (2.2 MB view details)

Uploaded Source

File details

Details for the file meter-digits-recognizer-0.2.3.tar.gz.

File metadata

File hashes

Hashes for meter-digits-recognizer-0.2.3.tar.gz
Algorithm Hash digest
SHA256 d402541d7885756204e4801eacd21789e2913d67e04bc29c0e04a5eebe592835
MD5 be065f6c744de14c014313c2e979b12c
BLAKE2b-256 15387843cce5cb2f1e14a3ac07bac12f4751f72390e3290d74bd5806abd805a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page