Skip to main content

A client package for interaction with a MetGet server instance

Project description

MetGet Logo MetGet is an application which allows users to query, format, and blend meteorological data from various sources to be used in hydrodynamic modeling applications.

License: MIT PyPI version Conda Version Conda Platforms Testing codecov Downloads black

Development Partners

MetGet is developed by The Water Institute and has been funded by the University of North Carolina at Chapel Hill Coastal Resilience Center of Excellence.

The Water Institute

Coastal Resilience Center of Excellence

University of North Carolina at Chapel Hill

MetGet Client Application

The MetGet client application is a tool that allows you to interact with the MetGet server. It may be used as a traditional command line tool or the MetGetBuildRest class may be imported and run in a custom application.

The MetGet client handles the interaction with the server via RESTful API calls and downloading output data from S3 buckets. The client application is not a requirement for using MetGet, but it is a convenient way to interact with the server.

MetGet Server Access

The metget client application interacts with an instance of a metget-server, which is a Kubernetes application that archives, builds, and provides to users meteorological data through the client application. The client does not require that you use any specific MetGet server instance. Instead, you may choose to operate your own metget-server instance or you may contact The Water Institute to request access to an available instance.

Installation

The MetGet client application can be installed using from the PyPi repository or via Anaconda using the conda-forge repository. The below commands show how to install the client and its dependencies.

Using PyPi:

$ pip3 install metget

Using Anaconda:

$ conda install -c conda-forge metget

Terminology

There are several terms used in the MetGet client application that are important to understand. The below list of terms aims to explain these terms and why they are available as options in the client application.

  1. analysis - The term analysis is synonymous with the term "nowcast". It is the time when the model is initialized, or the "zero" hour of a model run. Requesting that MetGet provide "analysis" data via the --analysis command line option will fore MetGet to return only zero hour for any forecast runs. This option is incompatible with "--multiple-forecasts" and "--initialization-skip".
  2. multiple-forecasts - This option is used to signify that the user wants to request multiple forecast hours from the model. This allows MetGet to string together different forecasts to create quasi-hindcast data. The selection of available data is done by selecting unique times with the smallest offset from the start of their respective forecasts. This option is incompatible with --analysis.
  3. initialization-skip - In some instances, it may be useful to skip the first [n] hours of a particular forecast when there is a potentially severe initialization that occurs in the atmospheric model. This option instructs MetGet to ignore the first [n] hours of a forecast.

Environment Variables

There are three influential environment variables which can be set as a convenience to the user. These variables are:

  • METGET_API_KEY - The API key used to authenticate with MetGet
  • METGET_ENDPOINT - The URL of the MetGet server, i.e. https://metget.server.org
  • METGET_API_VERSION - The version of the MetGet API to use. The system will default to 2.

Usage

The client application can request multiple types of data from the server. The below examples show how to request data from a MetGet server instance via the command line tool.

Note: In the below examples, we assume that the above environment variables have been set. If they have not been set, you will need to pass additional command line flags.

Example 1 - Request GFS data

This example requests data from the GFS for a two-day period. We will generate the data from a single self-consistent forecast formatted as a single NetCDF file. The data will be interpolated to a 0.25 degree grid and cover a portion of the Gulf of Mexico.

$ metget build --domain gfs 0.25 -100 10 -80 30 \
               --start "2023-06-01 00:00" \
               --end "2023-06-03 00:00" \
               --timestep 3600 \
               --output metget_gfs_data.nc \
               --format generic-netcdf

Example 2 - Request GFS data with multiple forecasts

This example requests data from the GFS for a thirty-day period. We will generate the data from multiple forecasts as a quasi-hindcast. The data will be interpolated to a 0.25 degree grid and cover a portion of the Gulf of Mexico.

$ metget build --domain gfs 0.25 -100 10 -80 30 \
               --start "2023-05-01 00:00" \
               --end "2023-06-01 00:00" \
               --output metget_gfs_data.nc \
               --format generic-netcdf \
               --timestep 3600 \
               --multiple-forecasts

Example 3 - Request GFS data with multiple forecasts and initialization skip

This example requests data from the GFS for a thirty-day period. We will generate the data from multiple forecasts as a quasi-hindcast. The data will be interpolated to a 0.25 degree grid and cover a portion of the Gulf of Mexico. We will skip the first 6 hours of each forecast.

$ metget build --domain gfs 0.25 -100 10 -80 30 \
               --start "2023-05-01 00:00" \
               --end "2023-06-01 00:00" \
               --timestep 3600 \
               --format generic-netcdf \
               --multiple-forecasts \
               --initialization-skip 6 \
               --output metget_gfs_data.nc

Example 4 - Request HWRF data overlaid on GFS data

This example requests data from the HWRF model (Hurricane Mawar) with background forcing from the GFS model. Note that at the present time, the output format must support multi-domain data. Currently, the only format that supports this is owi-ascii. The data will be interpolated to a 0.25 degree grid and cover a portion of the Gulf of Mexico.

$ metget build --domain hwrf-mawar02w 0.15 -90 20 -85 25 \
               --domain gfs 0.25 -100 10 -80 30 \
               --start "2023-06-01 00:00" \
               --end "2023-06-03 00:00" \
               --timestep 3600 \
               --backfill \
               --format owi-ascii \
               --output metget_hwrf_data

Example 5 - Get the status of the GFS model runs

This example demonstrates the ability for the system to provide information about what data is currently available

$ metget status gfs --format pretty
Status for model: GFS (class: synoptic)
+---------------------+---------------------+------------------+
|    Forecast Cycle   |       End Time      |      Status      |
+---------------------+---------------------+------------------+
| 2023-07-06 18:00:00 | 2023-07-17 09:00:00 | incomplete (255) |
| 2023-07-06 12:00:00 | 2023-07-22 12:00:00 |     complete     |
| 2023-07-06 06:00:00 | 2023-07-22 06:00:00 |     complete     |
| 2023-07-06 00:00:00 | 2023-07-22 00:00:00 |     complete     |
| 2023-07-05 18:00:00 | 2023-07-21 18:00:00 |     complete     |
| 2023-07-05 12:00:00 | 2023-07-21 12:00:00 |     complete     |
| 2023-07-05 06:00:00 | 2023-07-21 06:00:00 |     complete     |
| 2023-07-05 00:00:00 | 2023-07-21 00:00:00 |     complete     |
| 2023-07-04 18:00:00 | 2023-07-20 18:00:00 |     complete     |
| 2023-07-04 12:00:00 | 2023-07-20 12:00:00 |     complete     |
| 2023-07-04 06:00:00 | 2023-07-20 06:00:00 |     complete     |
| 2023-07-04 00:00:00 | 2023-07-20 00:00:00 |     complete     |
+---------------------+---------------------+------------------+

Example 6: Retrieve GEOJSON track data for a specific storm

This example demonstrates the ability to retrieve track data for a specific storm. The track data is returned in GEOJSON format.

$ metget track --year 2022 --storm 9 --basin al --type forecast --advisory 3 #...Hurricane Ian 2022, Advisory 3 track data
$ metget track --year 2022 --storm 9 --basin al --type besttrack #...Hurricane Ian 2022, best track data

Example 7: Request the storm track data from the A-Deck

This example demonstrates how to get the storm track data for the GFS model (i.e. AVNO) for a specific storm and cycle. The data is returned in tabular format, but optionally can be requested in a machine-readable json format.

$ metget adeck --storm 14 --model AVNO --cycle 2024-10-08
+---------------------+-----------+----------+---------------+------------------+
|         Time        | Longitude | Latitude | Pressure (mb) | Wind Speed (mph) |
+---------------------+-----------+----------+---------------+------------------+
| 2024-10-08T00:00:00 |   -90.5   |   21.8   |      978      |      71.35       |
| 2024-10-08T06:00:00 |   -89.7   |   21.8   |      973      |      88.61       |
| 2024-10-08T12:00:00 |   -88.7   |   22.2   |      965      |      85.16       |
| 2024-10-08T18:00:00 |   -88.0   |   22.5   |      960      |      88.61       |
| 2024-10-09T00:00:00 |   -87.1   |   22.9   |      964      |      86.31       |
| 2024-10-09T06:00:00 |   -86.3   |   23.6   |      962      |      88.61       |
| 2024-10-09T12:00:00 |   -85.6   |   24.5   |      959      |      86.31       |
| 2024-10-09T18:00:00 |   -84.8   |   25.5   |      957      |      89.76       |
| 2024-10-10T00:00:00 |   -83.7   |   26.6   |      955      |      94.36       |
| 2024-10-10T06:00:00 |   -82.8   |   27.5   |      956      |      96.67       |
| 2024-10-10T12:00:00 |   -81.5   |   28.4   |      972      |      59.84       |
| 2024-10-10T18:00:00 |   -80.2   |   28.9   |      982      |      59.84       |
| 2024-10-11T00:00:00 |   -78.6   |   29.3   |      986      |       67.9       |
| 2024-10-11T06:00:00 |   -77.4   |   29.4   |      991      |       67.9       |
| 2024-10-11T12:00:00 |   -76.2   |   29.1   |      996      |      64.44       |
| 2024-10-11T18:00:00 |   -74.9   |   28.8   |      997      |      54.09       |
| 2024-10-12T00:00:00 |   -73.5   |   29.0   |      999      |      51.79       |
| 2024-10-12T06:00:00 |   -72.0   |   29.2   |      1000     |      43.73       |
| 2024-10-12T12:00:00 |   -70.5   |   29.7   |      1002     |      41.43       |
| 2024-10-12T18:00:00 |   -69.0   |   30.5   |      1003     |      44.88       |
| 2024-10-13T00:00:00 |   -67.0   |   31.3   |      1005     |      39.13       |
| 2024-10-13T06:00:00 |   -64.6   |   31.8   |      1006     |      32.22       |
| 2024-10-13T12:00:00 |   -62.0   |   32.2   |      1009     |      33.37       |
| 2024-10-13T18:00:00 |   -59.5   |   32.1   |      1009     |      31.07       |
| 2024-10-14T00:00:00 |   -57.2   |   32.3   |      1012     |      29.92       |
| 2024-10-14T06:00:00 |   -55.3   |   32.0   |      1012     |      27.62       |
| 2024-10-14T12:00:00 |   -54.9   |   30.9   |      1015     |      28.77       |
| 2024-10-14T18:00:00 |   -54.4   |   30.0   |      1014     |      27.62       |
| 2024-10-15T00:00:00 |   -54.0   |   29.5   |      1016     |      26.47       |
| 2024-10-15T06:00:00 |   -54.0   |   29.4   |      1014     |      23.02       |
| 2024-10-15T12:00:00 |   -53.9   |   29.7   |      1016     |      21.86       |
| 2024-10-15T18:00:00 |   -53.6   |   30.3   |      1013     |      21.86       |
| 2024-10-16T00:00:00 |   -53.0   |   31.4   |      1014     |      23.02       |
| 2024-10-16T06:00:00 |   -52.1   |   32.7   |      1012     |      21.86       |
| 2024-10-16T12:00:00 |   -50.9   |   34.5   |      1010     |      24.17       |
| 2024-10-16T18:00:00 |   -48.6   |   37.2   |      1007     |      33.37       |
| 2024-10-17T00:00:00 |   -45.1   |   40.3   |      1006     |      40.28       |
| 2024-10-17T06:00:00 |   -40.3   |   42.7   |      1004     |      46.03       |
| 2024-10-17T12:00:00 |   -36.2   |   44.4   |      1004     |      44.88       |
| 2024-10-17T18:00:00 |   -32.3   |   46.2   |      999      |      42.58       |
| 2024-10-18T00:00:00 |   -29.0   |   48.2   |      995      |      39.13       |
+---------------------+-----------+----------+---------------+------------------+

Example 8: Request all active systems

This example demonstrates the ability to retrieve all active storms in the Atlantic basin. The data is returned in tabular format, but optionally can be requested in a machine-readable json format.

$ metget adeck --storm all --model AVNO --cycle 2024-10-08
+-------+-------------------+------------------+------------------------+---------------------------+
| Storm | Current Longitude | Current Latitude | Min Fcst Pressure (mb) | Max Fcst Wind Speed (mph) |
+-------+-------------------+------------------+------------------------+---------------------------+
|   13  |       -42.7       |       17.7       |          982           |           57.54           |
|   14  |       -90.5       |       21.8       |          955           |           96.67           |
+-------+-------------------+------------------+------------------------+---------------------------+

Custom Applications

The MetGet client library (MetGetBuildRest) can be imported and used in custom applications. The below example shows how to use the client application in a custom Python script. Below is a simple version of how the main client application interacts with the metget-client library. You can use this as a starting point for your own custom applications.

import argparse
from metget.metget_build import MetGetBuildRest

metget_server = "https://metget.server.org"
metget_api_key = "my-api-key"
metget_api_version = 2

args = argparse.Namespace
output_format = 'owi-ascii'

# ...Building the request
request_data = MetGetBuildRest.generate_request_json(
    analysis=args.analysis,
    multiple_forecasts=args.multiple_forecasts,
    start_date=args.start,
    end_date=args.end,
    format=output_format,
    data_type=args.variable,
    backfill=args.backfill,
    time_step=args.timestep,
    domains=MetGetBuildRest.parse_command_line_domains(
        args.domain, args.initialization_skip
    ),
    compression=args.compression,
    epsg=args.epsg,
    filename=args.output,
    strict=args.strict,
    dry_run=args.dryrun,
    save_json_request=args.save_json_request,
)

client = MetGetBuildRest(metget_server, metget_api_key, metget_api_version)
data_id, status_code = client.make_metget_request(request_data)
client.download_metget_data(
    data_id,
    args.check_interval,
    args.max_wait,
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metget-0.10.3.tar.gz (31.7 kB view details)

Uploaded Source

Built Distribution

metget-0.10.3-py3-none-any.whl (30.0 kB view details)

Uploaded Python 3

File details

Details for the file metget-0.10.3.tar.gz.

File metadata

  • Download URL: metget-0.10.3.tar.gz
  • Upload date:
  • Size: 31.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for metget-0.10.3.tar.gz
Algorithm Hash digest
SHA256 6f9c8e4ade56c362bed2b77b2bd62339e03ac100eee390ee60d942739012e9e0
MD5 f7e009657b9d68e532dd84bc2fe9c706
BLAKE2b-256 12e0d9b83b8e52c7bbbb49431a849d942453de3c34055bc97c09524a31540bad

See more details on using hashes here.

File details

Details for the file metget-0.10.3-py3-none-any.whl.

File metadata

  • Download URL: metget-0.10.3-py3-none-any.whl
  • Upload date:
  • Size: 30.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for metget-0.10.3-py3-none-any.whl
Algorithm Hash digest
SHA256 274940d80cf85322edb455ba8f126112fc9c0db1dd0211ad6cddc81435f06775
MD5 8fb430de1de02c9e611438f9976b1c44
BLAKE2b-256 5e38e5a0864c3f1f79e4b505c122dede4f34967f56100ae3f373339f5bf4f0e8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page