Skip to main content

Location Oriented Observed Meteorology (LOOM)

Project description

metloom

https://img.shields.io/pypi/v/metloom.svg Testing Status Documentation Status Code Coverage

Location Oriented Observed Meteorology

metloom is a python library created with the goal of consistent, simple sampling of meteorology and snow related point measurments from a variety of datasources across the Western US. metloom is developed by M3 Works as a tool for validating computational hydrology model results. Contributions welcome!

Warning - This software is provided as is (see the license), so use at your own risk. This is an opensource package with the goal of making data wrangling easier. We make no guarantees about the quality or accuracy of the data and any interpretation of the meaning of the data is up to you.

  • Free software: BSD license

Features

  • Sampling of daily, hourly, and snow course data

  • Searching for stations from a datasource within a shapefile

  • Current data sources:

Requirements

python >= 3.7

Install

python3 -m pip install metloom

Local install for dev

The recommendation is to use virtualenv, but other local python environment isolation tools will work (pipenv, conda) .. code-block:: bash

python3 -m pip install –upgrade pip python3 -m pip install -r requirements_dev python3 -m pip install .

Testing

pytest

If contributing to the codebase, code coverage should not decrease from the contributions. Make sure to check code coverage before opening a pull request.

pytest --cov=metloom

Documentation

readthedocs coming soon

https://metloom.readthedocs.io.

Usage

See usage documentation https://metloom.readthedocs.io/en/latest/usage.html

NOTES: PointData methods that get point data return a GeoDataFrame indexed on both datetime and station code. To reset the index simply run df.reset_index(inplace=True)

Usage Examples

Use metloom to find data for a station

from datetime import datetime
from metloom.pointdata import SnotelPointData

snotel_point = SnotelPointData("713:CO:SNTL", "MyStation")
df = snotel_point.get_daily_data(
    datetime(2020, 1, 2), datetime(2020, 1, 20),
    [snotel_point.ALLOWED_VARIABLES.SWE]
)
print(df)

Use metloom to find snow courses within a geometry

from metloom.pointdata import CDECPointData
from metloom.variables import CdecStationVariables

import geopandas as gpd

fp = <path to shape file>
obj = gpd.read_file(fp)

vrs = [
    CdecStationVariables.SWE,
    CdecStationVariables.SNOWDEPTH
]
points = CDECPointData.points_from_geometry(obj, vrs, snow_courses=True)
df = points.to_dataframe()
print(df)

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

History

0.1.0 (2021-10-05)

  • This is the first release!

  • Create the package

  • Add CDEC functionality

  • Add SNOTEL functionality

  • Add CLI to find stations from shapefile

  • Write a custom Snotel client using zeep

0.2.0 (2021-12-29)

  • Added mesowest network

  • Added in a token json arg to the get_*_data functions

  • Pinned docutils for an update that happened

  • Added in a resample_df function for the highway stations where the returned data is 5min for air temp.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metloom-0.2.14.tar.gz (40.8 kB view details)

Uploaded Source

Built Distribution

metloom-0.2.14-py2.py3-none-any.whl (27.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file metloom-0.2.14.tar.gz.

File metadata

  • Download URL: metloom-0.2.14.tar.gz
  • Upload date:
  • Size: 40.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for metloom-0.2.14.tar.gz
Algorithm Hash digest
SHA256 59254f7b9f3d7649c7dec4f884fdc2474bef64c8b53bec019ae350963720fd15
MD5 fd42dba826ce5e4fa115afdbe122a29e
BLAKE2b-256 b3789d53dd76a272cba8da4f04ee16792f5054eb431fcd36b0c2869b25ecc079

See more details on using hashes here.

File details

Details for the file metloom-0.2.14-py2.py3-none-any.whl.

File metadata

  • Download URL: metloom-0.2.14-py2.py3-none-any.whl
  • Upload date:
  • Size: 27.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for metloom-0.2.14-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 12f03f1216346c2313ea737749ef0e21b8346f001602971d87ed4db419940bb5
MD5 43b9bb413692895babe037a29992b556
BLAKE2b-256 9d8d3af719efc6312e513edcb50bf5f661f46e831b0afdfe50cdf6cc3c4f6316

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page