Skip to main content

Metrics for Machine Learning evaluation Data Science Measurement

Project description

Metrics for evaluating machine learning models or Data Science

Include : All metrics from SKLEARN. Category based metrics. ########################################################################

from metric.metric import *


##### Classification metrics	

accuracy_score(y_true, y_pred,...)	Accuracy classification score.
auc(x,y)	Compute Area Under the Curve (AUC) using the trapezoidal rule
average_precision_score(y_true,y_score)	Compute average precision (AP) from prediction scores
balanced_accuracy_score(y_true,y_pred)	Compute the balanced accuracy
brier_score_loss(y_true,y_prob,...)	Compute the Brier score.
classification_report(y_true,y_pred)	Build a text report showing the main classification metrics
cohen_kappa_score(y1,y2,...)	Cohen’s kappa: a statistic that measures inter-annotator agreement.
confusion_matrix(y_true,y_pred,...)	Compute confusion matrix to evaluate the accuracy of a classification.
dcg_score(y_true,y_score , k, ...  )	Compute Discounted Cumulative Gain.
f1_score(y_true,y_pred,...)	Compute the F1 score, also known as balanced F-score or F-measure
fbeta_score(y_true,y_pred, beta,...)	Compute the F-beta score
hamming_loss(y_true,y_pred,...)	Compute the average Hamming loss.
hinge_loss(y_true, pred_decision,...)	Average hinge loss (non-regularized)
jaccard_score(y_true,y_pred,...)	Jaccard similarity coefficient score
log_loss(y_true,y_pred , eps, ...  )	Log loss, aka logistic loss or cross-entropy loss.
matthews_corrcoef(y_true,y_pred,...)	Compute the Matthews correlation coefficient (MCC)
multilabel_confusion_matrix(y_true, ...)	Compute a confusion matrix for each class or sample
ndcg_score(y_true,y_score , k, ...  )	Compute Normalized Discounted Cumulative Gain.
precision_recall_curve(y_true, ...)	Compute precision-recall pairs for different probability thresholds
precision_recall_fscore_support(...)	Compute precision, recall, F-measure and support for each class
precision_score(y_true,y_pred,...)	Compute the precision
recall_score(y_true,y_pred,...)	Compute the recall
roc_auc_score(y_true,y_score,...)	Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.
roc_curve(y_true,y_score,...)	Compute Receiver operating characteristic (ROC)
zero_one_loss(y_true,y_pred,...)	Zero-one classification loss.



##### Regression metrics	

explained_variance_score(y_true,y_pred)	Explained variance regression score function
max_error(y_true,y_pred)	max_error metric calculates the maximum residual error.
mean_absolute_error(y_true,y_pred)	Mean absolute error regression loss
mean_squared_error(y_true,y_pred,...)	Mean squared error regression loss
mean_squared_log_error(y_true,y_pred)	Mean squared logarithmic error regression loss
median_absolute_error(y_true,y_pred)	Median absolute error regression loss
r2_score(y_true,y_pred,...)	R^2 (coefficient of determination) regression score function.
mean_poisson_deviance(y_true,y_pred)	Mean Poisson deviance regression loss.
mean_gamma_deviance(y_true,y_pred)	Mean Gamma deviance regression loss.
mean_tweedie_deviance(y_true,y_pred)	Mean Tweedie deviance regression loss.



##### Multilabel ranking metrics	

coverage_error(y_true,y_score,...)	Coverage error measure
label_ranking_average_precision_score(...)	Compute ranking-based average precision
label_ranking_loss(y_true,y_score)	Compute Ranking loss measure



##### Clustering metrics	

supervised, which uses a ground truth class values for each sample.	
unsupervised, which does not and measures the ‘quality’ of the model itself.	

adjusted_mutual_info_score(...,...)	Adjusted Mutual Information between two clusterings.
adjusted_rand_score(labels_true, ...)	Rand index adjusted for chance.
calinski_harabasz_score(X, labels)	Compute the Calinski and Harabasz score.
davies_bouldin_score(X, labels)	Computes the Davies-Bouldin score.
completeness_score(labels_true, ...)	Completeness metric of a cluster labeling given a ground truth.
cluster.contingency_matrix(...,...)	Build a contingency matrix describing the relationship between labels.
fowlkes_mallows_score(labels_true, ...)	Measure the similarity of two clusterings of a set of points.
homogeneity_completeness_v_measure(...)	Compute the homogeneity and completeness and V-Measure scores at once.
homogeneity_score(labels_true, ...)	Homogeneity metric of a cluster labeling given a ground truth.
mutual_info_score(labels_true, ...)	Mutual Information between two clusterings.
normalized_mutual_info_score(...,...)	Normalized Mutual Information between two clusterings.
silhouette_score(X, labels,...)	Compute the mean Silhouette Coefficient of all samples.
silhouette_samples(X, labels , metric  )	Compute the Silhouette Coefficient for each sample.
v_measure_score(labels_true, labels_pred)	V-measure cluster labeling given a ground truth.


Biclustering metrics	

consensus_score(a, b , similarity  )	The similarity of two sets of biclusters.



Pairwise metrics	

pairwise.additive_chi2_kernel(X ,y  )	Computes the additive chi-squared kernel between observations in X and Y
pairwise.chi2_kernel(X ,y, gamma  )	Computes the exponential chi-squared kernel X and Y.
pairwise.cosine_similarity(X ,y, ...  )	Compute cosine similarity between samples in X and Y.
pairwise.cosine_distances(X ,y  )	Compute cosine distance between samples in X and Y.
pairwise.distance_metrics()	Valid metrics for pairwise_distances.
pairwise.euclidean_distances(X ,y, ...  )	Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors.
pairwise.haversine_distances(X ,y  )	Compute the Haversine distance between samples in X and Y
pairwise.kernel_metrics()	Valid metrics for pairwise_kernels
pairwise.laplacian_kernel(X ,y, gamma  )	Compute the laplacian kernel between X and Y.
pairwise.linear_kernel(X ,y, ...  )	Compute the linear kernel between X and Y.
pairwise.manhattan_distances(X ,y, ...  )	Compute the L1 distances between the vectors in X and Y.
pairwise.nan_euclidean_distances(X)	Calculate the euclidean distances in the presence of missing values.
pairwise.pairwise_kernels(X ,y, ...  )	Compute the kernel between arrays X and optional array Y.
pairwise.polynomial_kernel(X ,y, ...  )	Compute the polynomial kernel between X and Y.
pairwise.rbf_kernel(X ,y, gamma  )	Compute the rbf (gaussian) kernel between X and Y.
pairwise.sigmoid_kernel(X ,y, ...  )	Compute the sigmoid kernel between X and Y.
pairwise.paired_euclidean_distances(X,y)	Computes the paired euclidean distances between X and Y
pairwise.paired_manhattan_distances(X,y)	Compute the L1 distances between the vectors in X and Y.
pairwise.paired_cosine_distances(X,y)	Computes the paired cosine distances between X and Y
pairwise.paired_distances(X,y , metric  )	Computes the paired distances between X and Y.
pairwise_distances(X ,y, metric, ...  )	Compute the distance matrix from a vector array X and optional Y.
pairwise_distances_argmin(X,y,...)	Compute minimum distances between one point and a set of points.
pairwise_distances_argmin_min(X,y)	Compute minimum distances between one point and a set of points.
pairwise_distances_chunked(X ,y, ...  )	Generate a distance matrix chunk by chunk with optional reduction


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metric-0.10.0.tar.gz (40.1 kB view details)

Uploaded Source

Built Distribution

metric-0.10.0-py3-none-any.whl (44.2 kB view details)

Uploaded Python 3

File details

Details for the file metric-0.10.0.tar.gz.

File metadata

  • Download URL: metric-0.10.0.tar.gz
  • Upload date:
  • Size: 40.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.5

File hashes

Hashes for metric-0.10.0.tar.gz
Algorithm Hash digest
SHA256 ddf043090bebbdcd8d84a562f7a9f7c4e4c8331fec48bce490a57d2c2436580e
MD5 8bc547d7aa5e8d1afab7f8d77bda04cc
BLAKE2b-256 eaa4225f17c54dfb9c9ac24d9d5af4c6bee1e489297a86fc4cc0f814d8c82d82

See more details on using hashes here.

File details

Details for the file metric-0.10.0-py3-none-any.whl.

File metadata

  • Download URL: metric-0.10.0-py3-none-any.whl
  • Upload date:
  • Size: 44.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.5

File hashes

Hashes for metric-0.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c774ea270241688269d4ff162e9fa69588505e5e8b1403aeb6d7afa0555c4652
MD5 48b7ead8c9ee21a449a13c432978bcbc
BLAKE2b-256 b5291f0dcaefa9b72102b24cb124832c033af1b0de5dffede4e9e8e08dc0b35b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page