Skip to main content

Utility for building templated metric extraction queries that can be traversed through time.

Project description

Metric Builder

Utility for building templated metric extraction queries that can be traversed through time.


You will need the following to run this code:

  • Python 3


To be determined...


In order to extract a given metric, a Metric object needs to be instantiated:

metric = Metric(
        SELECT count(*) AS total
        FROM `project.dataset.table`
        WHERE DATETIME_TRUNC(created_datetime, DAY) = '{{ reference_time | format_date('%Y-%m-%d') }}'
    reader = BigQueryReader(json_credentials_path='/path/to/creds.json')

The query parameter is a templated query where you can format the reference_time datetime object to the required format using template filters.

The reader parameter is the object that is actually going to connect to the desired database and perform the queries.

The metric object can now be used to fetch metrics for a given point in time as follows:

result = metric.fetch(, 10, 21))

The result is returned as a list of dictionaries.

Template filters

Jinja2 is used as the templating engine. All built in Jinja filters are thus available. Relevant custom template filters have been added though for convenience:


Specify format of datetime:

'{{ reference_time | format_date('%Y-%m-%d') }}'


Change a given datetime object by a specified number of days:

'{{ reference_time | day_delta(-7) | format_date('%Y-%m-%d') }}'


Any reader will implement the following method that is used to execute queries:

def execute(self, query) -> List[Dict[str, Any]]:


The underlying client is required to be authenticated with the necessary priviledges to read from the requested BigQuery tables.

If you authenticate with:

gcloud auth login


export GOOGLE_APPLICATION_CREDENTIALS="/path/to/keyfile.json"

then you can just instantiate your Reader like this:

reader = BigQueryReader()

The other option is to explicitly authenticate with a service account key file:

reader = BigQueryReader(json_credentials_path='/path/to/creds.json')


Coming soon...

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metric_builder- (7.4 kB view hashes)

Uploaded source

Built Distribution

metric_builder- (8.6 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page