Skip to main content

Metric python3 module

Project description

METRIC-PY

A python wrapper for METRIC library (https://panda.technology/de/metric)

Installation

You need Python 3.6+

Linux & OS X

python -m pip install metric-py -i https://test.pypi.org/simple/

Windows (x64 only)

You will need to install any BLAS implementation. The easiest way is by using Miniconda:

conda config --add channels conda-forge
conda update -n base conda -y
conda install -c conda-forge libopenblas openblas -y

Then you can use pip to install

python -m pip install metric-py -i https://test.pypi.org/simple/

Build from the source

git clone --recurse-submodules https://github.com/panda-official/metric

Download and extract Boost (1.67+). For Windows there are pre-build binaries available.

Install Prerequisites

Ubuntu

sudo apt-get install cmake
sudo apt-get install libboost-all-dev
sudo apt-get install libopenblas-dev

Windows

Install Miniconda. In Conda CLI initialize your virtual environment with desired Python version:

conda create --name my_env -y python=3.8
conda activate my_env

Install OpenBLAS from alternative repo

conda config --add channels conda-forge
conda update -n base conda -y
conda install -c conda-forge libopenblas openblas -y

Build package

At least 2GB of RAM is required

python setup.py bdist_wheel

to limit memory usage during build add MAKE="make -j1":

MAKE="make -j1" python3 setup.py bdist_wheel

Install module

python -m pip install dist/*

Examples

import numpy
from metric.correlation import Entropy
from metric.distance import Euclidean, P_norm, Manhatten

aent = numpy.float_([
    [5.0, 5.0],
    [2.0, 2.0],
    [3.0, 3.0],
    [5.0, 1.0],
])

print("Entropies:")
for metric in (Euclidean, P_norm, Manhatten):
    res = Entropy(metric=metric(), p=3, k=2)(aent)
    print(f'using {metric}: {res:.5f}')

res = Entropy(p=3, k=2)(aent)
print(f'using Default: {res:.5f}')

for more examples please check examples/ folder

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

metric_py-0.0.6-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8Windows x86-64

metric_py-0.0.6-cp38-cp38-manylinux2014_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.8

metric_py-0.0.6-cp37-cp37m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7mWindows x86-64

metric_py-0.0.6-cp37-cp37m-manylinux2014_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.7m

metric_py-0.0.6-cp36-cp36m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.6mWindows x86-64

metric_py-0.0.6-cp36-cp36m-manylinux2014_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.6m

File details

Details for the file metric_py-0.0.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: metric_py-0.0.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.2.0.post20200511 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for metric_py-0.0.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 29ad6a7617068ece99d786dcdc941bd2fb22ee04a4e2b9f28e1e7417b210ccf8
MD5 0817d289d100efe06d73077963c9db38
BLAKE2b-256 4f322adf80843a4fbb65ded2c33e0dd09da8b53a808dac96ce937ae5f3aeae2f

See more details on using hashes here.

File details

Details for the file metric_py-0.0.6-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: metric_py-0.0.6-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/44.1.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/2.7.12

File hashes

Hashes for metric_py-0.0.6-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23183069ebaf6d319ec3596f0dd29db4725b610538d8a4a9e40f637242a41971
MD5 539804b7380f7c24e6579d5976fc6f7b
BLAKE2b-256 485aef2c545233218c5992aeb83b65c2d124aa4814721c53168f13b3062493e3

See more details on using hashes here.

File details

Details for the file metric_py-0.0.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: metric_py-0.0.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.2.0.post20200511 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6

File hashes

Hashes for metric_py-0.0.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9f6e312a112ebf923cf7ccf5b507a90f755623c4f1550216ecfd13483f48101c
MD5 4035b429f7dca06ad77e869deefa6f66
BLAKE2b-256 b4fc772ec71252477bc4bfbcd45ec4bc39e9849dbb0d68f3aeb64ae0e786d7bd

See more details on using hashes here.

File details

Details for the file metric_py-0.0.6-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: metric_py-0.0.6-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/44.1.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/2.7.12

File hashes

Hashes for metric_py-0.0.6-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1e9e3d30d2ab8900452e1deb72f0bbd0f4f41e7fc24f498eec7faa2d13bad6d
MD5 12d8f5aabca5630b7aaa4bc0a67aaaa2
BLAKE2b-256 a653c0425a0cfa759fcbd0ce8f1c32d389d01d87c1005306f88f377262ad5474

See more details on using hashes here.

File details

Details for the file metric_py-0.0.6-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: metric_py-0.0.6-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.2.0.post20200511 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.10

File hashes

Hashes for metric_py-0.0.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c89bf8a5f02bf866974507b381c5b75091d8a50d50c08646ba15931fddc93816
MD5 9c9589d17832996a6e229cd60017d481
BLAKE2b-256 375470b65ac4e122c4826011f87ee7e525780bfd589e1950b8c6a4c0d9e43073

See more details on using hashes here.

File details

Details for the file metric_py-0.0.6-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: metric_py-0.0.6-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/44.1.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/2.7.12

File hashes

Hashes for metric_py-0.0.6-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e6958f1e10790aef5b48eb0850758ae935cdfc2028235e84c21f03b08add986
MD5 3767cd6ff6c3ccaddecc49beb8aeea4a
BLAKE2b-256 e29f8bdbb0176c1c2f1cff8f86e9ab49c73968e1be609a4f15f3c456f1b3074a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page