Generating reports on metrics for Machine Learning models
Project description
Metrics Report
MetricsReport is a Python package that generates classification and regression metrics report for machine learning models.
Features
- AutoDetect the type of task
- Save report in .html and .md format
- Has several plotting functions
Installation
You can install MetricsReport using pip:
pip install metricsreport
Usage
from metricsreport import MetricsReport
# sample classification data
y_true = [1, 0, 0, 1, 0, 1, 0, 1]
y_pred = [0.8, 0.3, 0.1, 0.9, 0.4, 0.7, 0.2, 0.6]
# generate report
report = MetricsReport(y_true, y_pred, threshold=0.5)
# print all metrics
print(report.metrics)
# plot ROC curve
report.plot_roc_curve()
# saved MetricsReport (html) in folder: report_metrics
report.save_report()
More examples in the folder ./examples:
Constructor
MetricsReport(y_true, y_pred, threshold: float = 0.5)
y_true
: list- A list of true target values.
y_pred
: list- A list of predicted target values.
threshold
: float- Threshold for generating binary classification metrics. Default is 0.5.
Plots
following methods can be used to generate plots:
plot_roc_curve()
: Generates a ROC curve plot.plot_all_count_metrics()
: Generates a count metrics plot.plot_precision_recall_curve()
: Generates a precision-recall curve plot.plot_confusion_matrix()
: Generates a confusion matrix plot.plot_class_distribution()
: Generates a class distribution plot.plot_class_hist()
: Generates a class histogram plot.plot_calibration_curve()
: Generates a calibration curve plot.plot_lift_curve()
: Generates a lift curve plot.plot_cumulative_gain()
: Generates a cumulative gain curve plot.
Dependencies
- numpy
- pandas
- matplotlib
- scikit-learn
- scikit-plot
License
This project is licensed under the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
metricsreport-2024.5.15.tar.gz
(14.0 kB
view details)
Built Distribution
File details
Details for the file metricsreport-2024.5.15.tar.gz
.
File metadata
- Download URL: metricsreport-2024.5.15.tar.gz
- Upload date:
- Size: 14.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.2 CPython/3.10.0 Linux/6.5.13-3-pve
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 077f7295a23efee1ce147213b4af7a0e040a1ecaeeae57c006207fd2b5a6eade |
|
MD5 | aacae0d55327f1fd4489e95c19d05e6f |
|
BLAKE2b-256 | 76a6bb2eaacd67ad28f93edec25dab983d4e39cbd294851f1e5bf78788fdf8f2 |
File details
Details for the file metricsreport-2024.5.15-py3-none-any.whl
.
File metadata
- Download URL: metricsreport-2024.5.15-py3-none-any.whl
- Upload date:
- Size: 14.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.2 CPython/3.10.0 Linux/6.5.13-3-pve
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 04b00fb2edb17dd3e2edffe87ea32c23f5bb30c3e9739c3e96ff564feaf7cde6 |
|
MD5 | 946d4ef7c897d985950541f93fab9a41 |
|
BLAKE2b-256 | 5773f4801ce7645a2dfcbdfdd2e8d3ddd0ff5fca237ae643a95c2d4727694ae7 |