Skip to main content

Generating reports on metrics for Machine Learning models

Project description

Metrics Report

PyPI - Python Version PyPI Telegram License


MetricsReport is a Python package that generates classification and regression metrics report for machine learning models.

sample

Features

  • AutoDetect the type of task
  • Save report in .html and .md format
  • Has several plotting functions

Installation

You can install MetricsReport using pip:

pip install metricsreport

Usage

from metricsreport import MetricsReport  

# sample classification data 
y_true = [1, 0, 0, 1, 0, 1, 0, 1] 
y_pred = [0.8, 0.3, 0.1, 0.9, 0.4, 0.7, 0.2, 0.6]  

# generate report 
report = MetricsReport(y_true, y_pred, threshold=0.5)  

# print all metrics 
print(report.metrics)  

# plot ROC curve 
report.plot_roc_curve()

# saved MetricsReport (html) in folder: report_metrics
report.save_report()

More examples in the folder ./examples:

Constructor

MetricsReport(y_true, y_pred, threshold: float = 0.5)
  • y_true : list
    • A list of true target values.
  • y_pred : list
    • A list of predicted target values.
  • threshold : float
    • Threshold for generating binary classification metrics. Default is 0.5.

Plots

following methods can be used to generate plots:

  • plot_roc_curve(): Generates a ROC curve plot.
  • plot_all_count_metrics(): Generates a count metrics plot.
  • plot_precision_recall_curve(): Generates a precision-recall curve plot.
  • plot_confusion_matrix(): Generates a confusion matrix plot.
  • plot_class_distribution(): Generates a class distribution plot.
  • plot_class_hist(): Generates a class histogram plot.
  • plot_calibration_curve(): Generates a calibration curve plot.
  • plot_lift_curve(): Generates a lift curve plot.
  • plot_cumulative_gain(): Generates a cumulative gain curve plot.

Dependencies

  • numpy
  • pandas
  • matplotlib
  • scikit-learn
  • scikit-plot

License

This project is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metricsreport-2024.5.15.tar.gz (14.0 kB view details)

Uploaded Source

Built Distribution

metricsreport-2024.5.15-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file metricsreport-2024.5.15.tar.gz.

File metadata

  • Download URL: metricsreport-2024.5.15.tar.gz
  • Upload date:
  • Size: 14.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.0 Linux/6.5.13-3-pve

File hashes

Hashes for metricsreport-2024.5.15.tar.gz
Algorithm Hash digest
SHA256 077f7295a23efee1ce147213b4af7a0e040a1ecaeeae57c006207fd2b5a6eade
MD5 aacae0d55327f1fd4489e95c19d05e6f
BLAKE2b-256 76a6bb2eaacd67ad28f93edec25dab983d4e39cbd294851f1e5bf78788fdf8f2

See more details on using hashes here.

File details

Details for the file metricsreport-2024.5.15-py3-none-any.whl.

File metadata

  • Download URL: metricsreport-2024.5.15-py3-none-any.whl
  • Upload date:
  • Size: 14.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.0 Linux/6.5.13-3-pve

File hashes

Hashes for metricsreport-2024.5.15-py3-none-any.whl
Algorithm Hash digest
SHA256 04b00fb2edb17dd3e2edffe87ea32c23f5bb30c3e9739c3e96ff564feaf7cde6
MD5 946d4ef7c897d985950541f93fab9a41
BLAKE2b-256 5773f4801ce7645a2dfcbdfdd2e8d3ddd0ff5fca237ae643a95c2d4727694ae7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page