Generating reports on metrics for Machine Learning models
Project description
Metrics Report
MetricsReport is a Python package that generates classification and regression metrics report for machine learning models.
Features
- AutoDetect the type of task
- Save report in .html and .md format
- Has several plotting functions
Installation
You can install MetricsReport using pip:
pip install metricsreport
Usage
from metricsreport import MetricsReport
# sample classification data
y_true = [1, 0, 0, 1, 0, 1, 0, 1]
y_pred = [0.8, 0.3, 0.1, 0.9, 0.4, 0.7, 0.2, 0.6]
# generate report
report = MetricsReport(y_true, y_pred, threshold=0.5)
# print all metrics
print(report.metrics)
# plot ROC curve
report.plot_roc_curve()
# saved MetricsReport (html) in folder: report_metrics
report.save_report()
More examples in the folder ./examples:
Constructor
MetricsReport(y_true, y_pred, threshold: float = 0.5)
y_true
: list- A list of true target values.
y_pred
: list- A list of predicted target values.
threshold
: float- Threshold for generating binary classification metrics. Default is 0.5.
Plots
following methods can be used to generate plots:
plot_roc_curve()
: Generates a ROC curve plot.plot_all_count_metrics()
: Generates a count metrics plot.plot_precision_recall_curve()
: Generates a precision-recall curve plot.plot_confusion_matrix()
: Generates a confusion matrix plot.plot_class_distribution()
: Generates a class distribution plot.plot_class_hist()
: Generates a class histogram plot.plot_calibration_curve()
: Generates a calibration curve plot.plot_lift_curve()
: Generates a lift curve plot.plot_cumulative_gain()
: Generates a cumulative gain curve plot.
Dependencies
- numpy
- pandas
- matplotlib
- scikit-learn
- scikit-plot
License
This project is licensed under the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
metricsreport-2024.4.20.tar.gz
(10.2 kB
view hashes)
Built Distribution
Close
Hashes for metricsreport-2024.4.20-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 64b7142239504cd00dce127cf4621725c8ca376d17b6b8c76b2d21d037d2e238 |
|
MD5 | 55d9c1b5983e4ea5f3d736c583c55fef |
|
BLAKE2b-256 | 056df96829d724f0573a41a9f3336b18cc939173629d0e3d4ebe7d2322a4d8f9 |