Skip to main content

Python bindings for MetroHash, a fast non-cryptographic hash algorithm

Project description

MetroHash

Python wrapper for MetroHash, a fast non-cryptographic hash function.

Build Status Latest Version Downloads License Supported Python versions

Getting Started

To use this package in your program, simply type

pip install metrohash

After that, you should be able to import the module and do things with it (see usage example below).

Usage Examples

Stateless hashing

This package provides Python interfaces to 64- and 128-bit implementations of MetroHash algorithm. For stateless hashing, it exports metrohash64 and metrohash128 functions. Both take a value to be hashed and an optional seed parameter:

>>> import metrohash
...
>>> metrohash.hash64_int("abc", seed=0)
17099979927131455419
>>> metrohash.hash128_int("abc")
182995299641628952910564950850867298725

Incremental hashing

Unlike its cousins CityHash and FarmHash, MetroHash allows incremental (stateful) hashing. For incremental hashing, use MetroHash64 and MetroHash128 classes. Incremental hashing is associative and guarantees that any combination of input slices will result in the same final hash value. This is useful for processing large inputs and stream data. Example with two slices:

>>> mh = metrohash.MetroHash64()
>>> mh.update("Nobody inspects")
>>> mh.update(" the spammish repetition")
>>> mh.intdigest()
7851180100622203313

The resulting hash value above should be the same as in:

>>> mh = metrohash.MetroHash64()
>>> mh.update("Nobody inspects the spammish repetition")
>>> mh.intdigest()
7851180100622203313

Fast hashing of NumPy arrays

The Python Buffer Protocol allows Python objects to expose their data as raw byte arrays to other objects, for fast access without copying to a separate location in memory. Among others, NumPy is a major framework that supports this protocol.

All hashing functions in this packege will read byte arrays from objects that expose them via the buffer protocol. Here is an example showing hashing of a 4D NumPy array:

>>> import numpy as np
>>> arr = np.zeros((256, 256, 4))
>>> metrohash.hash64_int(arr)
12125832280816116063

The arrays need to be contiguous for this to work. To convert a non-contiguous array, use NumPy's ascontiguousarray() function.

Development

Local workflow

For those who want to contribute, here is a quick start using some makefile commands:

git clone https://github.com/escherba/python-metrohash.git
cd python-metrohash
make env           # create a virtual environment
make test          # run Python tests
make cpp-test      # run C++ tests
make shell         # enter IPython shell

To find out which Make targets are available, type:

make help

Distribution

The wheels are built using cibuildwheel and are distributed to PyPI using GitHub actions. The wheels contain compiled binaries and are available for the following platforms: windows-amd64, ubuntu-x86, linux-x86_64, linux-aarch64, and macosx-x86_64.

See Also

For other fast non-cryptographic hash functions available as Python extensions, see FarmHash and MurmurHash.

Authors

The MetroHash algorithm and C++ implementation is due to J. Andrew Rogers. The Python bindings for it were written by Eugene Scherba.

License

This software is licensed under the Apache License, Version 2.0. See the included LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metrohash-0.3.3.tar.gz (63.2 kB view details)

Uploaded Source

Built Distributions

metrohash-0.3.3-cp311-cp311-win_amd64.whl (32.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

metrohash-0.3.3-cp311-cp311-win32.whl (32.7 kB view details)

Uploaded CPython 3.11 Windows x86

metrohash-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (205.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

metrohash-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (205.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

metrohash-0.3.3-cp311-cp311-macosx_11_0_arm64.whl (35.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

metrohash-0.3.3-cp311-cp311-macosx_10_9_x86_64.whl (37.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

metrohash-0.3.3-cp310-cp310-win_amd64.whl (33.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

metrohash-0.3.3-cp310-cp310-win32.whl (32.8 kB view details)

Uploaded CPython 3.10 Windows x86

metrohash-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (190.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

metrohash-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (190.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

metrohash-0.3.3-cp310-cp310-macosx_11_0_arm64.whl (35.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

metrohash-0.3.3-cp310-cp310-macosx_10_9_x86_64.whl (37.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

metrohash-0.3.3-cp39-cp39-win_amd64.whl (33.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

metrohash-0.3.3-cp39-cp39-win32.whl (33.1 kB view details)

Uploaded CPython 3.9 Windows x86

metrohash-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (195.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

metrohash-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (197.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

metrohash-0.3.3-cp39-cp39-macosx_11_0_arm64.whl (36.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

metrohash-0.3.3-cp39-cp39-macosx_10_9_x86_64.whl (37.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

metrohash-0.3.3-cp38-cp38-win_amd64.whl (33.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

metrohash-0.3.3-cp38-cp38-win32.whl (33.2 kB view details)

Uploaded CPython 3.8 Windows x86

metrohash-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

metrohash-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (195.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

metrohash-0.3.3-cp38-cp38-macosx_10_9_x86_64.whl (37.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

metrohash-0.3.3-cp37-cp37m-win_amd64.whl (33.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

metrohash-0.3.3-cp37-cp37m-win32.whl (32.9 kB view details)

Uploaded CPython 3.7m Windows x86

metrohash-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (185.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

metrohash-0.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (184.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

metrohash-0.3.3-cp37-cp37m-macosx_10_9_x86_64.whl (36.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

metrohash-0.3.3-cp36-cp36m-win_amd64.whl (33.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

metrohash-0.3.3-cp36-cp36m-win32.whl (33.0 kB view details)

Uploaded CPython 3.6m Windows x86

metrohash-0.3.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (184.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

metrohash-0.3.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (183.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

metrohash-0.3.3-cp36-cp36m-macosx_10_9_x86_64.whl (37.8 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file metrohash-0.3.3.tar.gz.

File metadata

  • Download URL: metrohash-0.3.3.tar.gz
  • Upload date:
  • Size: 63.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for metrohash-0.3.3.tar.gz
Algorithm Hash digest
SHA256 6b75bc384efdcd9409529a4697fd913b1c47d746d93ca612a4a5e87f2581d332
MD5 4716dd6b66fe601fa00252293f06a7a7
BLAKE2b-256 54b66d93fe1bb8871537a7fdb441c66c3fa2a5caf095653a7c78ea441f7a95c0

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e3ddca7f50e63746e456d3933278aadce9a98d7e9311aada8f02f12814b13db7
MD5 6ae847d74a692b9ed7c8d9ea11abda69
BLAKE2b-256 c03a4728b732b4435c29d7b2590028f067d3ff5f5cbff7ffab2ae33e5b017095

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: metrohash-0.3.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 32.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for metrohash-0.3.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 00f7afe5028fcdaad8cf26c3ed432e1da60323e8da53f61bffc405343b37d3d7
MD5 060832c56653558f88a8ea2e9a87a2c6
BLAKE2b-256 d98b4e1b3e79831d6bf79b8ff413e9fd3433cb6e742595ccf0f48508a067d047

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ff52007e02927519627d61dd5840a5ad05cc3e933d2b3b7cefe1a8089e2b5c1
MD5 da562be1521573668322dd629e1266bf
BLAKE2b-256 be35f054aa83311ac55465bb866b647718d2fc5bd62849770f830d7bd155549f

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e2deec525cead0abc3f4aa2174f528f08673563e06658674e50f852a7ba5dc2f
MD5 9517c78d73053b88a8b9ff897bc67821
BLAKE2b-256 ea35c0200e0b53ba003383b570164a6327b2983badc8a803864dcf836beefaa1

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c727b4edd191a2134d0e79d972efdef7d32e651cbbb54b459d153cafb5525109
MD5 607dc3190b68444e0dbf1b058ff744b3
BLAKE2b-256 edd4a9f0b29d7cb10a104acf1ed85fe45f10210b5a3226414e8a37a2f9265d6c

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6d1661188b2083f87227bcabd91523ddd950c2ae63be4b40da948c6da4269f02
MD5 3c9cceb91c536c9d95fd1bc50c3f11df
BLAKE2b-256 928450a74191be905ffa56af1221dfa3e92406546eb35db545b2de7e5879331a

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 06f354b5269687eeef1a845f9f4e8cdca5b64d25a066c80ea9dcf5a2c614c994
MD5 afe40f7b7af29b90e4f986a3b60eb876
BLAKE2b-256 804a5929c6b02c6e272efc506b55e4011af122973943950cfc3f38d798d60542

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: metrohash-0.3.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 32.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for metrohash-0.3.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 90e8178953f5c0c99e2be46fb978114c3c3c707a1eaf00d2c6e95d78832c51c9
MD5 0fbc231d9b04328dab239d0841d4676d
BLAKE2b-256 2b2382cc1987813e7b7c5747c7cace9d7482fe68c785a720104fa30d5d8607a7

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 07478d06b181dc225e8ed01f68cdf549899ec5154d158726fc14e701fc19a33f
MD5 557190bfaf8f32f0074fad2f58385009
BLAKE2b-256 09d1f8959759ff20fcaa899658d9a9c9c0a6ed540b5aff6b1a7a524033b4d647

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6a23c5a3734afab33e9eccdfe79b0af75f1b9426b643d61024fe8bb1b105619f
MD5 6fb198a6f65cd77050027c40747f4f1a
BLAKE2b-256 129869bc10fac6e5997ed0ae9382f561dd25cc8bff7f2bc01eae4ef62b461b59

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4856f21f770c88744c8236b7c538068153d3de7ea6ff299ca8ce847442447840
MD5 33f0968f74d4d1fc4ccfb77abf43db02
BLAKE2b-256 4c4bf30cc273544b82ecd66a53937aba0422699de1d6394f31a6ed1461e5cdcb

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7c68e6f1aab17f40c17df9750d302942244bbfd4de0054eb7936ed56f10c6846
MD5 4ffde5943394606c3b2ad34c818cebc1
BLAKE2b-256 d47578ad4a33a7deef197c7d5825d8b655c0b45acc5fdc1fe3978244a1e0bee1

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: metrohash-0.3.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 33.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for metrohash-0.3.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 35d3d876564c57d46e2e684069bb92719f1d5130636ae0a23904d7bccada318d
MD5 a74578979b7585147a2ccaaf7db88cba
BLAKE2b-256 d77339f2a08c3e714a97f9006e67b02944a2a422329536c1709982a338854f6b

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: metrohash-0.3.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 33.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for metrohash-0.3.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0af3d8e368ffabfddeb21d6dff23fcde90e8282efe122d94e15de121142ed6aa
MD5 a2df93d24f623a3f3f8769da0ed2ccc8
BLAKE2b-256 b017b71041c66fbf0aa37884c614cde9a619f91e8a7318348a022593268c6f66

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8915093c7eed6b6fae6bf7ed7d46b622d36137711d2ff520a0c6ea4a0903a9ca
MD5 fb33bbb99e783867ccf8c3ee1d86fb2e
BLAKE2b-256 338036321195db666ebcdb9267d79cd75c84f4b247730646ee9d1f6eb56260a7

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 340c6a8f41086aa8e3f22b93a78975aa30aec94669b566a469f23563f63fb621
MD5 0e9f0e6a6309454a85ea64a9ffba2ce0
BLAKE2b-256 3ab351cceb60e8095b2504a6bb9ced5b470f4dbdab59b0640b296abd0a08b5ae

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 21f6eac44548c31bd8b300c9796838e717b72afe1315568355a35a015efa2c1c
MD5 9f27e1319e4741dedae48b59b45d3499
BLAKE2b-256 941735848e244a53a54ce33db643c047e7cb5547347e6849242f444606c5fbba

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9cbcc4bde0d5be9a2e7eac09bc748850d5438407d46b574db1ba9a990d688a01
MD5 8df14d563339689c867e0d44de1fa7ef
BLAKE2b-256 5f04aa90cf27299ebe95e26cdb5823a6ce0b4dace7b9dff7433c243015e70b5b

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: metrohash-0.3.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 33.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for metrohash-0.3.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0295d16de7511e71f6a4af8a9eb6152855e289a434ea7aba8356089bb87f5708
MD5 9d3566d1fdd2d6a37faf4669b8f44e3b
BLAKE2b-256 f6ae0a97164b99db6097e6c60490515a90147532be1cd979bea2568501a9e36c

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: metrohash-0.3.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 33.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for metrohash-0.3.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4a1708e0fbd0df76731a3b1fc667f8be58b8aea3d556afc974741534229a9a63
MD5 7d7b9c440f3a7eb831b0fea0e81bfdad
BLAKE2b-256 a4f8ec63f3e26059615f95785785eef145c03eb3ef06661d0662ed49fbb16412

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 42591d67282e23da0b813614fe97e196449aadebc2ad88d6aa727f2f43694679
MD5 75d68972dc4ae69588f552a11a1cce83
BLAKE2b-256 ff87e94a7f300d90a8cc00a7cc6a37d3c0d83293ead4783d0ea67fea6db3a4f4

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8360c996e3c116e5c0727c2760e4c3ee4b40386dd1f8ae8fd612f78f038d1ffe
MD5 3b68b4bc6231cc34da703003ddcd38fc
BLAKE2b-256 0f292dce9f347a415ad0bbfb7f013963c5c5198aa33c5d7d71b7b7bb3c40a0e6

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1039636ffb7fec3dd5e03bc28f594a450a462e1a1edfff5f723bbcae02a1b2d4
MD5 f1e9a5263ac270739b76f4e4aec7ecab
BLAKE2b-256 91bcaa6e0862b4c761d92485b7fecab7dd8c8f71915e0fe37e715d74fd68b68c

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: metrohash-0.3.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 33.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for metrohash-0.3.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 668fc5e59daf6f2ed9db6c560ad09cc6c8993cac9af74da9d9068a06102078ca
MD5 7bf978bfc364ce6fe2cbef75c5b1c9b2
BLAKE2b-256 adaca0fa91d9b32ca49efb6dd47943747685158b1f6cb9d585d90c2b4207825a

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: metrohash-0.3.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 32.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for metrohash-0.3.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b20c505b22509fa2024efc986630660b1cecb8c25473db98ef51d60842ab7d3e
MD5 36094bcd7d9e7b65312cea2940cff2e0
BLAKE2b-256 2161491b127671aa4bdd885120925e94a6855cc023c4e1bb63f1d81d0b41d2a0

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f327c4e4d93c42a6750ec26dfee9308776776b8d9718018d7f3a9b7d6afc1594
MD5 19f4f068326c38a74123396449a66b8c
BLAKE2b-256 a2cdb9051d63d7904c17708146012492cdc472f544765d6d308332aff2ae722e

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c8e536098802143a576a558f5b2e432eb17fc5c7649a465f96df736f0125f81d
MD5 e1235040d3a4b36b3048d4680cb7d926
BLAKE2b-256 e810d168a05543435b3324bced33f5e7742cbe1eeec34957100050bcd7ea2a61

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 24f4b41d86f09913eabb1b2bde88f1d9fa0c6076fa16c1b518d3cab2a4bb6029
MD5 1fc67733d6f23805264a1f955066201e
BLAKE2b-256 a048608329bf41c1370938870bc54e0a5d00093f32a71a7d5db269cd46a0c704

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: metrohash-0.3.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 33.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for metrohash-0.3.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9e8405c79484e81c8ff5263ffe472e6eeb9c808de07c83da3663159fd6dd1f4e
MD5 8f1d9344564021e191d5d77587087abc
BLAKE2b-256 329940619fce783b1c5a12d580cfb7d1a3b24cf8cdda0f594b209905cd7911d2

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: metrohash-0.3.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 33.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for metrohash-0.3.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 cccc6b44ac97e7911562df066f04991403775fca374fa6d493a91142d4a6a6eb
MD5 0a435b734cfacfedc0b4237ba8ef0b9c
BLAKE2b-256 7ee60785a9ed64ba015c380bfe179887da9b5002a4650f5ccf3e24b3af41ee29

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0d8b4eb678847613cd5763925a8f337bdd4fff94f3265154d422d4058e4ba47b
MD5 2ef5f40730074003361c71ff0ecbdb07
BLAKE2b-256 27f3d2ca4685e673a7d9d5789018368556e25293aacddf3b6052281d7d09ed57

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 32691614244da194936a80fc56ffbeeb46c7e6bef7a8aedf9d403ab4381adf8c
MD5 334614c759fe0b71bcd6dd46f78f66fa
BLAKE2b-256 aa51df4b29cd67921e17a3769a95b7b3a801a13a2fd566867846c428e1c787a9

See more details on using hashes here.

File details

Details for the file metrohash-0.3.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for metrohash-0.3.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e41409f06d6b6f910d4a77bdacdf9c4ae4eb5fcfde960d2e5ee9a7b775673527
MD5 d8290ecc1569595e25b3257ed11dc3d8
BLAKE2b-256 d82c70d649ace021709229adf9018f8c84ce9d25167d8cc37154a1181df78716

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page