Skip to main content

MFEM + PyMFEM (finite element method library)

Project description

PyMFEM (MFEM Python wrapper)

This package (PyMFEM) is Python wrapper for the MFEM high performance parallel finite element metod library.(http://mfem.org/).

Installer downloads a couple of external libraries and build them. By default, "pip install mfem" downloads and builds the serial version of MFEM and PyMFEM. See more detail below for other configurations

Install

pip install mfem --no-binary mfem   # install serial MFEM + wrapper

The setup script accept various options. TO use it, please donwload the package and run the script manually. For example, this below download and build parallel version of MFEM libray (linked with Metis and Hypre) and install under /mfem

$ pip3 download mfem
(expand tar.gz file and move to the downloaded directory)
$ python setup.py install --with-parallel # it download and build metis/hypre/mfem

For other configurations, see docs/install.txt or help

$ python setup.py install --help

Usage

Here is an example to solve div(grad(f)) = 1 in squre and to plot the result with matplotlib (modifed from ex1.cpp)

import mfem.ser as mfem

# create sample mesh for squre shape
mesh = mfem.Mesh(10, 10, "TRIANGLE")

# create finite element function space
fec = mfem.H1_FECollection(1, mesh.Dimension())   # H1 order=1
fespace = mfem.FiniteElementSpace(mesh, fec)      

# 
ess_tdof_list = mfem.intArray()
ess_bdr = mfem.intArray([1]*mesh.bdr_attributes.Size())
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list)

# constant coefficient 
one = mfem.ConstantCoefficient(1.0)

# define Bilinear and Linear operator
a = mfem.BilinearForm(fespace)
a.AddDomainIntegrator(mfem.DiffusionIntegrator(one))
a.Assemble()
b = mfem.LinearForm(fespace)
b.AddDomainIntegrator(mfem.DomainLFIntegrator(one))
b.Assemble()

# create gridfuction, which is where the solution vector is stored
x = mfem.GridFunction(fespace);
x.Assign(0.0)

# form linear equation (AX=B)
A = mfem.OperatorPtr()
B = mfem.Vector()
X = mfem.Vector()
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
print("Size of linear system: " + str(A.Height()))

# solve it using PCG solver and store the solution to x
AA = mfem.OperatorHandle2SparseMatrix(A)
M = mfem.GSSmoother(AA)
mfem.PCG(AA, M, B, X, 1, 200, 1e-12, 0.0)
a.RecoverFEMSolution(X, b, x)

# extract vertices and solution as numpy array
verts = mesh.GetVertexArray()
sol = x.GetDataArray()

# plot solution using Matplotlib

import matplotlib.pyplot as plt
import matplotlib.tri as tri

triang = tri.Triangulation(verts[:,0], verts[:,1])

fig1, ax1 = plt.subplots()
ax1.set_aspect('equal')
tpc = ax1.tripcolor(triang, sol, shading='gouraud')
fig1.colorbar(tpc)
plt.show()

License

PyMFEM is licesed under BSD-3. Please refer the developers' web sites for the external libraries

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mfem-4.2.0rc1.tar.gz (5.9 MB view details)

Uploaded Source

File details

Details for the file mfem-4.2.0rc1.tar.gz.

File metadata

  • Download URL: mfem-4.2.0rc1.tar.gz
  • Upload date:
  • Size: 5.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.5

File hashes

Hashes for mfem-4.2.0rc1.tar.gz
Algorithm Hash digest
SHA256 b645f308acf21c096453e63729e39df9687c81296b5095c5e8d2b9d40a2f382c
MD5 9b31c92877e9254d326fc39acc03d7b2
BLAKE2b-256 19785ea322cc3106566dd95fbb99e0787a403faa1777a4687adfd3714f412bfa

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page