Skip to main content

Gaussian process regression to extract non-parametric 2-, 3- and many-body force fields.

Project description

Machine learning nonparametric force fields (MFF)

Build Status Doc DOI

An example tutorial jupyter notebook can be found in the tutorials folder.

alt text

Table of Contents

Background on MFF

The MFF package uses Gaussian process regression to extract non-parametric 2- and 3- body force fields from ab-initio calculations. For a detailed description of the theory behind Gaussian process regression to predict forces and/or energies, and an explanation of the mapping technique used, please refer to [1].

For an example use of the MFF package to build 3-body force fields for Ni nanoclusters, please see [2].

Pip Installation

To install MFF with pip, simply run the following in a Python 3.6 or 3.7 environment:

pip install mff

Source Installation

If the pip installation fails, try the following: Clone from source and enter the folder:

git clone https://github.com/kcl-tscm/mff.git
cd mff

If you don't have it, install virtualenv:

pip install virtualenv	   

Create a virtual environment using a python 3.6 installation

virtualenv --python=/usr/bin/python3.6 <path/to/new/virtualenv/>	

Activate the new virtual environment

source <path/to/new/virtualenv/bin/activate>	

To install from source run the following command:

python setup.py install	

Or, to build in place for development, run:

python setup.py develop

Examples

Refer to the two files in the Tutorial folder for working jupyter notebooks showing most of the functionalities of this package.

Maintainers

References

[1] A. Glielmo, C. Zeni, A. De Vita, Efficient non-parametric n-body force fields from machine learning (https://arxiv.org/abs/1801.04823)

[2] C .Zeni, K. Rossi, A. Glielmo, A. Fekete, N. Gaston, F. Baletto, A. De Vita Building machine learning force fields for nanoclusters (https://arxiv.org/abs/1802.01417)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mff-1.1.2.tar.gz (84.3 kB view details)

Uploaded Source

File details

Details for the file mff-1.1.2.tar.gz.

File metadata

  • Download URL: mff-1.1.2.tar.gz
  • Upload date:
  • Size: 84.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.7

File hashes

Hashes for mff-1.1.2.tar.gz
Algorithm Hash digest
SHA256 25ba7fa00b864098971ce7f4956e6eeec9a2f276d7ce7e72ffe0d82e29e0c6cc
MD5 e26a68319ecf67a648729a58da809a25
BLAKE2b-256 49cad45ea4c20468b96c082af94efed3c77640c5f6639311cbc9d62f8f5bfaaa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page