A set of tools in Python for multiscale graph correlation and other statistical tests
Project description
# mgcpy
[](https://coveralls.io/github/NeuroDataDesign/mgcpy?branch=master)
[](https://travis-ci.com/NeuroDataDesign/mgcpy)
[](https://pypi.org/project/mgcpy/)
[](https://pypi.org/project/mgcpy/)
[](https://zenodo.org/badge/latestdoi/147731955)
[](https://mgcpy.readthedocs.io/en/latest/?badge=latest)
[](https://opensource.org/licenses/Apache-2.0)
[](https://www.python.org/dev/peps/pep-0008/)
<a href="https://codeclimate.com/github/NeuroDataDesign/mgcpy/maintainability"><img src="https://api.codeclimate.com/v1/badges/979888a65926b3f27971/maintainability" /></a>
`mgcpy` is a Python package containing tools for multiscale graph correlation and other statistical tests, that is capable of dealing with high dimensional and multivariate data.
**Documentation:** https://mgcpy.readthedocs.io/en/latest/
## Installation Guide:
### Install from PyPi
```
pip3 install mgcpy
```
### Install from Github
```
git clone https://github.com/NeuroDataDesign/mgcpy
cd mgcpy
python3 setup.py install
```
- `sudo`, if required
- `python3 setup.py build_ext --inplace # for cython`, if you want to test in-place, first execute this
## Setting up the development environment:
- To build image and run from scratch:
- Install [docker](https://docs.docker.com/install/)
- Build the docker image, `docker build -t mgcpy:latest .`
- This takes 20-30 mins to build
- Launch the container to go into mgcpy's dev env, `docker run -it --rm --name mgcpy-env mgcpy:latest`
- Pull image from Dockerhub and run:
- `docker pull tpsatish95/mgcpy:latest` or `docker pull tpsatish95/mgcpy:development`
- `docker run -it --rm -p 8888:8888 --name mgcpy-env tpsatish95/mgcpy:latest`
- To run demo notebooks (from within Docker):
- `cd demos`
- `jupyter notebook --ip 0.0.0.0 --no-browser --allow-root`
- Then copy the url it generates, it looks something like this: `http://(0de284ecf0cd or 127.0.0.1):8888/?token=e5a2541812d85e20026b1d04983dc8380055f2d16c28a6ad`
- Edit this: `(0de284ecf0cd or 127.0.0.1)` to: `127.0.0.1`, in the above link and open it in your browser
- Then open `mgc.ipynb`
- To mount/load local files into docker container:
- Do `docker run -it --rm -v <local_dir_path>:/root/workspace/ -p 8888:8888 --name mgcpy-env tpsatish95/mgcpy:latest`, replace `<local_dir_path>` with your local dir path.
- Do `cd ../workspace` when you are inside the container to view the mounted files. The **mgcpy** package code will be in `/root/code` directory.
## MGC Algorithm's Flow

## License
This project is covered under the **Apache 2.0 License**.
[](https://coveralls.io/github/NeuroDataDesign/mgcpy?branch=master)
[](https://travis-ci.com/NeuroDataDesign/mgcpy)
[](https://pypi.org/project/mgcpy/)
[](https://pypi.org/project/mgcpy/)
[](https://zenodo.org/badge/latestdoi/147731955)
[](https://mgcpy.readthedocs.io/en/latest/?badge=latest)
[](https://opensource.org/licenses/Apache-2.0)
[](https://www.python.org/dev/peps/pep-0008/)
<a href="https://codeclimate.com/github/NeuroDataDesign/mgcpy/maintainability"><img src="https://api.codeclimate.com/v1/badges/979888a65926b3f27971/maintainability" /></a>
`mgcpy` is a Python package containing tools for multiscale graph correlation and other statistical tests, that is capable of dealing with high dimensional and multivariate data.
**Documentation:** https://mgcpy.readthedocs.io/en/latest/
## Installation Guide:
### Install from PyPi
```
pip3 install mgcpy
```
### Install from Github
```
git clone https://github.com/NeuroDataDesign/mgcpy
cd mgcpy
python3 setup.py install
```
- `sudo`, if required
- `python3 setup.py build_ext --inplace # for cython`, if you want to test in-place, first execute this
## Setting up the development environment:
- To build image and run from scratch:
- Install [docker](https://docs.docker.com/install/)
- Build the docker image, `docker build -t mgcpy:latest .`
- This takes 20-30 mins to build
- Launch the container to go into mgcpy's dev env, `docker run -it --rm --name mgcpy-env mgcpy:latest`
- Pull image from Dockerhub and run:
- `docker pull tpsatish95/mgcpy:latest` or `docker pull tpsatish95/mgcpy:development`
- `docker run -it --rm -p 8888:8888 --name mgcpy-env tpsatish95/mgcpy:latest`
- To run demo notebooks (from within Docker):
- `cd demos`
- `jupyter notebook --ip 0.0.0.0 --no-browser --allow-root`
- Then copy the url it generates, it looks something like this: `http://(0de284ecf0cd or 127.0.0.1):8888/?token=e5a2541812d85e20026b1d04983dc8380055f2d16c28a6ad`
- Edit this: `(0de284ecf0cd or 127.0.0.1)` to: `127.0.0.1`, in the above link and open it in your browser
- Then open `mgc.ipynb`
- To mount/load local files into docker container:
- Do `docker run -it --rm -v <local_dir_path>:/root/workspace/ -p 8888:8888 --name mgcpy-env tpsatish95/mgcpy:latest`, replace `<local_dir_path>` with your local dir path.
- Do `cd ../workspace` when you are inside the container to view the mounted files. The **mgcpy** package code will be in `/root/code` directory.
## MGC Algorithm's Flow

## License
This project is covered under the **Apache 2.0 License**.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size mgcpy-0.0.4-cp36-cp36m-macosx_10_13_x86_64.whl (205.6 kB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size mgcpy-0.0.4-py3.6-macosx-10.13-x86_64.egg (263.9 kB) | File type Egg | Python version 3.6 | Upload date | Hashes View |
Close
Hashes for mgcpy-0.0.4-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 64b53f13e2f74efce4fa53ed3bbba1c0f6ade03888f3a61c0465cd5b8aba7f18 |
|
MD5 | e4388519d293e96d1fd2772ecff66a94 |
|
BLAKE2-256 | c0fef1ca04a7e0442603936a559853bf96cc2110d0c7c1ead05fd4d1ab869ddd |
Close
Hashes for mgcpy-0.0.4-py3.6-macosx-10.13-x86_64.egg
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46948a9ed04e630de756355b3ffb7ff5956b85cf9274da2324da74c6893bf31d |
|
MD5 | 9a844e0d2ee7cf4577e170bd62c93458 |
|
BLAKE2-256 | 6f11f477acd7c536dedcc12ed40fa1927ca95d5dcd0fb7da25c24614b300396e |