Skip to main content

A set of tools in Python for multiscale graph correlation and other statistical tests

Project description

mgcpy

Coverage Status Build Status PyPI PyPI - Downloads DockerHub DOI Documentation Status License PEP8 Code Climate

mgcpy is a Python package containing tools for multiscale graph correlation and other statistical tests, that is capable of dealing with high dimensional and multivariate data.

Documentation: https://mgcpy.readthedocs.io/en/latest/

Installation Guide:

Install from PyPi

pip3 install mgcpy

Install from Github

git clone https://github.com/NeuroDataDesign/mgcpy
cd mgcpy
python3 setup.py install
  • sudo, if required
  • python3 setup.py build_ext --inplace # for cython, if you want to test in-place, first execute this

Setting up the development environment:

  • To build image and run from scratch:

    • Install docker
    • Build the docker image, docker build -t mgcpy:latest .
      • This takes 10-15 mins to build
    • Launch the container to go into mgcpy's dev env, docker run -it --rm --name mgcpy-env mgcpy:latest
  • Pull image from Dockerhub and run:

    • docker pull tpsatish95/mgcpy:latest or docker pull tpsatish95/mgcpy:development
    • docker run -it --rm -p 8888:8888 --name mgcpy-env tpsatish95/mgcpy:latest
  • To run demo notebooks (from within Docker):

    • cd demos
    • jupyter notebook --ip 0.0.0.0 --no-browser --allow-root
    • Then copy the url it generates, it looks something like this: http://(0de284ecf0cd or 127.0.0.1):8888/?token=e5a2541812d85e20026b1d04983dc8380055f2d16c28a6ad
    • Edit this: (0de284ecf0cd or 127.0.0.1) to: 127.0.0.1, in the above link and open it in your browser
    • Then open mgc.ipynb
  • To mount/load local files into docker container:

    • Do docker run -it --rm -v <local_dir_path>:/root/workspace/ -p 8888:8888 --name mgcpy-env tpsatish95/mgcpy:latest, replace <local_dir_path> with your local dir path.
    • Do cd ../workspace when you are inside the container to view the mounted files. The mgcpy package code will be in /root/code directory.

MGC Algorithm's Flow

MGCPY Flow

Power Curves

License

This project is covered under the Apache 2.0 License.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for mgcpy, version 0.1.0
Filename, size File type Python version Upload date Hashes
Filename, size mgcpy-0.1.0-cp36-cp36m-macosx_10_13_x86_64.whl (212.9 kB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size mgcpy-0.1.0-py3.6-macosx-10.13-x86_64.egg (281.9 kB) File type Egg Python version 3.6 Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page