LPIPS Similarity Metric for MegEngine
Project description
LPIPS for MegEngine
MegEngine port for LPIPS metric.
Get Started
Run pip3 install mge-lpips
to install this package. The provided mge_lpips.LPIPS
is a normal MegEngine M.Module
which can be used as a metric or a loss function.
import numpy as np
import megengine as mge
from mge_lpips import LPIPS
metric_lpips = LPIPS(net="alex")
in1 = np.random.uniform(-1, 1, size=(2, 3, 256, 256)).astype(np.float32)
in2 = np.random.uniform(-1, 1, size=(2, 3, 256, 256)).astype(np.float32)
d = metric_lpips(mge.Tensor(in1), mge.Tensor(in2))
Acknowledgements
The code of this project is modified from the original LPIPS project. The backbone model code is modified from torchvision. The weights are from the origian LPIPS project and torchvision.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
mge_lpips-0.1.0-py3-none-any.whl
(48.8 kB
view details)
File details
Details for the file mge_lpips-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: mge_lpips-0.1.0-py3-none-any.whl
- Upload date:
- Size: 48.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.4.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e6ea87854392de059cc74ccb38fe11bd45e0c75b127944ea4da0a9947fd50bbc |
|
MD5 | f8066f998f60129279be42391eabe5e3 |
|
BLAKE2b-256 | 15fa90ac9104d6e6b8b83630055641bb9082032fc45eedb3f7bc1db1b1c3a06c |