Skip to main content

MGLEX - MetaGenome Likelihood EXtractor

Project description

This Python Package provides a probabilistic model to classify nucleotide sequences in metagenome samples. It was developed as a framework to help researchers to reconstruct individual genomes from such datasets using custom workflows and to give developers the possibility to integrate the model into their programs.

Features

  • Integrates nucleotide composition, multi-sample coverage and taxonomic annotation

  • Learns a model in linear time with respect to the number of input sequences

  • Classifies novel sequences in linear time

  • Calculates likelihood and p-values

  • Calculates probabilistic distances between genome bins

Dependencies

MGLEX is a Python 3 package, it does not run with Python 2 versions. It depends on

  • NumPy

  • SciPy (for few functions)

  • docopt

Installation

Install dependencies with Debian/Ubuntu & Python-Virtualenv

We show how to install MLGEX under Debian and Ubuntu, but other platforms are similar.

You can simply install the requirements as system packages.

sudo apt install python3 python3-numpy python3-scipy

We recommend to create a Python virtual installation enviroment for MGLEX. In order to do so, install the venv package for your Python version (e.g. the Debian package python3.4-venv), if not included (or use virtualenv). The following command will make use of the installed system packages.

python3 -m venv --system-site-packages mglex-env
source mglex-env/bin/activate

Install dependencies with Conda

Similarly, you can use Anaconda or Conda to prepare an environment with the dependencies and activate it.

conda create -n mglex-env -c conda-forge numpy scipy docopt python=3
source activate mglex-env

Install MGLEX Python package

MGLEX is deposited on the Python Package Index and we recommend to install it via pip.

python -m pip install mglex

Credits

This package was created using NumPy by Johannes Dröge at the Computational Biology of Infection Research Group at the Helmholtz Centre for Infection Research, Braunschweig, Germany.

Please cite:

Dröge J, Schönhuth A, McHardy AC. (2017) A probabilistic model to recover individual genomes from metagenomes. PeerJ Computer Science 3:e117 https://doi.org/10.7717/peerj-cs.117

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MGLEX-0.2.1.tar.gz (55.1 kB view details)

Uploaded Source

File details

Details for the file MGLEX-0.2.1.tar.gz.

File metadata

  • Download URL: MGLEX-0.2.1.tar.gz
  • Upload date:
  • Size: 55.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for MGLEX-0.2.1.tar.gz
Algorithm Hash digest
SHA256 2a81a50c2f3ceb85a4f936ee7822c1249eeb74d46d4eca498201207d08788541
MD5 ef8d11f07f04ae196d15c4855b36d3f5
BLAKE2b-256 c614530f4233219561623d77743eef3fceb79ab3c1caabcc2e49de2b634170c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page