Skip to main content

MHC Binding Predictor

Project description

Build Status

mhcflurry

MHC I ligand prediction package with competitive accuracy and a fast and documented implementation.

MHCflurry supports Class I peptide/MHC binding affinity prediction using ensembles of allele-specific models. It runs on Python 2.7 and 3.4+ using the keras neural network library. It exposes command-line and Python library interfaces.

If you find MHCflurry useful in your research please cite:

O’Donnell, T. et al., 2017. MHCflurry: open-source class I MHC binding affinity prediction. bioRxiv. Available at: http://www.biorxiv.org/content/early/2017/08/09/174243.

Installation (pip)

Install the package:

$ pip install mhcflurry

Then download our datasets and trained models:

$ mhcflurry-downloads fetch

You can now generate predictions:

$ mhcflurry-predict \
       --alleles HLA-A0201 HLA-A0301 \
       --peptides SIINFEKL SIINFEKD SIINFEKQ \
       --out /tmp/predictions.csv

Wrote: /tmp/predictions.csv

See the documentation for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mhcflurry-1.1.0.tar.gz (42.0 kB view details)

Uploaded Source

File details

Details for the file mhcflurry-1.1.0.tar.gz.

File metadata

  • Download URL: mhcflurry-1.1.0.tar.gz
  • Upload date:
  • Size: 42.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for mhcflurry-1.1.0.tar.gz
Algorithm Hash digest
SHA256 c450001ab05cdf3da2594dc3db0eb7f043a494f2f3bf8a749ce3c416838a2a70
MD5 bb3853ed304dd48e35c5110968fd6bee
BLAKE2b-256 bebb361ede9170c41e0ef0c5926640572cce53aa53fee3f5d75f2a0329d186af

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page