Skip to main content

MHC Binding Predictor

Project description

[![Build Status](https://travis-ci.org/openvax/mhcflurry.svg?branch=master)](https://travis-ci.org/openvax/mhcflurry)

# mhcflurry
[MHC I](https://en.wikipedia.org/wiki/MHC_class_I) ligand
prediction package with competitive accuracy and a fast and
[documented](http://openvax.github.io/mhcflurry/) implementation.

MHCflurry supports Class I peptide/MHC binding affinity prediction using
ensembles of allele-specific models. It runs on Python 2.7 and 3.4+ using
the [keras](https://keras.io) neural network library. It exposes [command-line](http://openvax.github.io/mhcflurry/commandline_tutorial.html)
and [Python library](http://openvax.github.io/mhcflurry/python_tutorial.html) interfaces.

If you find MHCflurry useful in your research please cite:

> T. J. O’Donnell, A. Rubinsteyn, M. Bonsack, A. B. Riemer, U. Laserson, and J. Hammerbacher, "MHCflurry: Open-Source Class I MHC Binding Affinity Prediction," *Cell Systems*, 2018. Available at: https://www.cell.com/cell-systems/fulltext/S2405-4712(18)30232-1.

## Installation (pip)

Install the package:

```
$ pip install mhcflurry
```

Then download our datasets and trained models:

```
$ mhcflurry-downloads fetch
```

You can now generate predictions:

```
$ mhcflurry-predict \
--alleles HLA-A0201 HLA-A0301 \
--peptides SIINFEKL SIINFEKD SIINFEKQ \
--out /tmp/predictions.csv

Wrote: /tmp/predictions.csv
```

See the [documentation](http://openvax.github.io/mhcflurry/) for more details.

## MHCflurry model variants and mass spec

The default MHCflurry models are trained
on affinity measurements. Mass spec datasets are incorporated only in
the model selection step. We also release experimental predictors whose training data directly
includes mass spec. To download these predictors, run:

```
$ mhcflurry-downloads fetch models_class1_trained_with_mass_spec
```

and then to make them used by default:

```
$ export MHCFLURRY_DEFAULT_CLASS1_MODELS="$(mhcflurry-downloads path models_class1_trained_with_mass_spec)/models"
```

We also release predictors that do not use mass spec datasets at all. To use
these predictors, run:

```
$ mhcflurry-downloads fetch models_class1_selected_no_mass_spec
export MHCFLURRY_DEFAULT_CLASS1_MODELS="$(mhcflurry-downloads path models_class1_selected_no_mass_spec)/models"
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mhcflurry-1.2.4.tar.gz (57.7 kB view details)

Uploaded Source

File details

Details for the file mhcflurry-1.2.4.tar.gz.

File metadata

  • Download URL: mhcflurry-1.2.4.tar.gz
  • Upload date:
  • Size: 57.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for mhcflurry-1.2.4.tar.gz
Algorithm Hash digest
SHA256 084b1e613dbc9845822b4bc357c14c7e28d74f364dac75c0c0f69f40fb7ad091
MD5 622a07b368ee563ddefa430e71802635
BLAKE2b-256 c0cad5f3d602a44f35c2707cfceebe72a6180251f631e2260578211e7230e727

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page