MHC Binding Predictor
Project description
mhcflurry
MHC I ligand prediction package with competitive accuracy and a fast and documented implementation.
MHCflurry implements class I peptide/MHC binding affinity prediction. The current version provides pan-MHC I predictors supporting any MHC allele of known sequence. MHCflurry runs on Python 3.4+ using the keras neural network library. It exposes command-line and Python library interfaces.
Starting in version 1.6.0, MHCflurry also includes two expermental predictors, an “antigen processing” predictor that attempts to model MHC allele-independent effects such as proteosomal cleavage and a “presentation” predictor that integrates processing predictions with binding affinity predictions to give a composite “presentation score.” Both models are trained on mass spec-identified MHC ligands.
If you find MHCflurry useful in your research please cite:
T. J. O’Donnell, A. Rubinsteyn, M. Bonsack, A. B. Riemer, U. Laserson, and J. Hammerbacher, “MHCflurry: Open-Source Class I MHC Binding Affinity Prediction,” Cell Systems, 2018. https://www.cell.com/cell-systems/fulltext/S2405-4712(18)30232-1.
Please file an issue if you have questions or encounter problems.
Have a bugfix or other contribution? We would love your help. See our contributing guidelines.
Installation (pip)
Install the package:
$ pip install mhcflurry
Then download our datasets and trained models:
$ mhcflurry-downloads fetch
You can now generate predictions:
$ mhcflurry-predict \ --alleles HLA-A0201 HLA-A0301 \ --peptides SIINFEKL SIINFEKD SIINFEKQ \ --out /tmp/predictions.csv Wrote: /tmp/predictions.csv
Or scan protein sequences for potential epitopes:
$ mhcflurry-predict-scan \ --sequences MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHS \ --alleles HLA-A*02:01 \ --out /tmp/predictions.csv Wrote: /tmp/predictions.csv
See the documentation for more details.
Older allele-specific models
Previous versions of MHCflurry used models trained on affinity measurements, one allele per model (i.e. allele-specific). Mass spec datasets were incorporated in the model selection step.
These models are still available to use with the latest version of MHCflurry. To download these predictors, run:
$ mhcflurry-downloads fetch models_class1
and specify --models when you call mhcflurry-predict:
$ mhcflurry-predict \ --alleles HLA-A0201 HLA-A0301 \ --peptides SIINFEKL SIINFEKD SIINFEKQ \ --models "$(mhcflurry-downloads path models_class1)/models" --out /tmp/predictions.csv Wrote: /tmp/predictions.csv
Common issues and fixes
Problems downloading data and models
Some users have reported HTTP connection issues when using mhcflurry-downloads fetch. As a workaround, you can download the data manually (e.g. using wget) and then use mhcflurry-downloads just to copy the data to the right place.
To do this, first get the URL(s) of the downloads you need using mhcflurry-downloads url:
$ mhcflurry-downloads url models_class1_presentation https://github.com/openvax/mhcflurry/releases/download/1.6.0/models_class1_presentation.20200205.tar.bz2```
Then make a directory and download the needed files to this directory:
$ mkdir downloads $ wget --directory-prefix downloads https://github.com/openvax/mhcflurry/releases/download/1.6.0/models_class1_presentation.20200205.tar.bz2``` HTTP request sent, awaiting response... 200 OK Length: 72616448 (69M) [application/octet-stream] Saving to: 'downloads/models_class1_presentation.20200205.tar.bz2'
Now call mhcflurry-downloads fetch with the --already-downloaded-dir option to indicate that the downloads should be retrived from the specified directory:
$ mhcflurry-downloads fetch models_class1_presentation --already-downloaded-dir downloads
Problems deserializing models
If you encounter errors loading the MHCflurry models, such as:
... File "/usr/local/lib/python3.6/site-packages/keras/engine/topology.py", line 293, in __init__ raise TypeError('Keyword argument not understood:', kwarg) TypeError: ('Keyword argument not understood:', 'data_format')
You may need to upgrade Keras:
pip install --upgrade Keras
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mhcflurry-1.6.0.tar.gz
.
File metadata
- Download URL: mhcflurry-1.6.0.tar.gz
- Upload date:
- Size: 130.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.23.4 CPython/3.6.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5cab20d9f488c00972bea3342273d54d7bd3e6a0e824b56a7f5ca596355ee1a1 |
|
MD5 | fc0d439f57f006395d3aaa4e6ac1cb4a |
|
BLAKE2b-256 | e4dc6c6d6aa6b717d29995b1a3c24081dcf2d32d84e8f7880c8bbb952dae4653 |
File details
Details for the file mhcflurry-1.6.0-py3-none-any.whl
.
File metadata
- Download URL: mhcflurry-1.6.0-py3-none-any.whl
- Upload date:
- Size: 133.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.23.4 CPython/3.6.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c2b7f63dba9f7e53f23f0663e0dc906129c06b2095b0b62fe09c152109a5192f |
|
MD5 | acbdddac63e90e4b7a29956dba2ac4d7 |
|
BLAKE2b-256 | ef95cc8cc7324f4fdf7f32d8882fc4d25ae208038561e46cf0e7061f9dd88594 |