Skip to main content

A python library for named entity recognition evaluation

Project description

miNER

A python library for NER (Named Entity Recognition) evaluation

We can evaluate the performance of NER by distinguishing between known entities and unknown entities using this library.

Support

  • Tagging Scheme
    • IOB2
    • BIOES
    • BIOUL
  • metrics
    • precision
    • recall
    • f1

Requirements

  • python3
  • cython

Installation

pip install mi-ner

Usage

Sample

>>> from miner import Miner
>>> answers = [
    'B-PSN O O B-LOC O O O O'.split(' '),
    'B-PSN I-PSN O O B-LOC I-LOC O O O O'.split(' '),
    'S-PSN O O S-PSN O O B-LOC I-LOC E-LOC O O O O'.split(' ')
]
>>> predicts = [
    'B-PSN O O B-LOC O O O O'.split(' '),
    'B-PSN B-PSN O O B-LOC I-LOC O O O O'.split(' '),
    'S-PSN O O O O O B-LOC I-LOC E-LOC O O O O'.split(' ')
]
>>> sentences = [
    '花子 さん は 東京 に 行き まし た'.split(' '),
    '山田 太郎 君 は 東京 駅 に 向かい まし た'.split(' '),
    '花子 さん と ボブ くん は 東京 スカイ ツリー に 行き まし た'.split(' '),
]
>>> knowns = {'PSN': ['花子'], 'LOC': ['東京']} # known words (words included in training data)
>>> m = Miner(answers, predicts, sentences, knowns)
>>> m.default_report(True)
	precision    recall    f1_score   num
PSN	 0.500        0.500     0.500      4
LOC	 1.000        1.000     1.000      3
{'PSN': {'precision': 0.5, 'recall': 0.5, 'f1_score': 0.5, 'num': 4}, 'LOC': {'precision': 1.0, 'recall': 1.0, 'f1_score': 1.0, 'num': 3}}
>>> m.return_predict_named_entities()
{'known': {'PSN': ['花子'], 'LOC': ['東京']}, 'unknown': {'PSN': ['太郎', '山田'], 'LOC': ['東京駅', '東京スカイツリー']}}

Methods

method description
default_report(print_) return result of named entity recognition. if print_=True, showing result
known_only_report(print_) return result of known named entity recognition.
unknown_only_report(print_) return result of unknown named entity recognition.
return_predict_named_entities() return named entities along predicted label(predicts).
return_answer_named_entities() return named entities along answer label(answer).
return_miss_labelings() return miss labeling sentences.
segmentation_score(mode) show parcentages of matching answer and predict labels. if known or unknown for mode, return labeling accuracy for known or unknown NE.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mi-ner-0.5.0.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

mi_ner-0.5.0-cp37-cp37m-macosx_10_14_x86_64.whl (28.2 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file mi-ner-0.5.0.tar.gz.

File metadata

  • Download URL: mi-ner-0.5.0.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3

File hashes

Hashes for mi-ner-0.5.0.tar.gz
Algorithm Hash digest
SHA256 0bf6d22958fdd603a11e3bc64c771cf98a0722428739d49f0e5d114622aa4a3e
MD5 4873934eb1de872696a82141d43f17bd
BLAKE2b-256 dfbe60c206aa43fa542a6dc97e3fa7d3ed62ecb654a315ab97295c544929edf9

See more details on using hashes here.

File details

Details for the file mi_ner-0.5.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: mi_ner-0.5.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 28.2 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3

File hashes

Hashes for mi_ner-0.5.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ab5326253bb49a7490cf3acb22a4e3bd13cd9016464a6b3d7161ad30751684fd
MD5 dd5f740126051d48d99217cd2caa38b2
BLAKE2b-256 1d1c52d492483850f0e208e4c25e6e20cc7cb3e08edeb37d31bd2375a102e7d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page