Skip to main content

A python library for named entity recognition evaluation

Project description

miNER

A python library for NER (Named Entity Recognition) evaluation

We can evaluate the performance of NER by distinguishing between known entities and unknown entities using this library.

Support

  • Tagging Scheme
    • IOB2
    • BIOES
    • BIOUL
  • metrics
    • precision
    • recall
    • f1

Requirements

  • python3
  • cython

Installation

pip install mi-ner

Usage

Sample

>>> from miner import Miner
>>> answers = [
    'B-PSN O O B-LOC O O O O'.split(' '),
    'B-PSN I-PSN O O B-LOC I-LOC O O O O'.split(' '),
    'S-PSN O O S-PSN O O B-LOC I-LOC E-LOC O O O O'.split(' ')
]
>>> predicts = [
    'B-PSN O O B-LOC O O O O'.split(' '),
    'B-PSN B-PSN O O B-LOC I-LOC O O O O'.split(' '),
    'S-PSN O O O O O B-LOC I-LOC E-LOC O O O O'.split(' ')
]
>>> sentences = [
    '花子 さん は 東京 に 行き まし た'.split(' '),
    '山田 太郎 君 は 東京 駅 に 向かい まし た'.split(' '),
    '花子 さん と ボブ くん は 東京 スカイ ツリー に 行き まし た'.split(' '),
]
>>> knowns = {'PSN': ['花子'], 'LOC': ['東京']} # known words (words included in training data)
>>> m = Miner(answers, predicts, sentences, knowns)
>>> m.default_report(True)
	precision    recall    f1_score   num
PSN	 0.500        0.500     0.500      4
LOC	 1.000        1.000     1.000      3
{'PSN': {'precision': 0.5, 'recall': 0.5, 'f1_score': 0.5, 'num': 4}, 'LOC': {'precision': 1.0, 'recall': 1.0, 'f1_score': 1.0, 'num': 3}}
>>> m.return_predict_named_entities()
{'known': {'PSN': ['花子'], 'LOC': ['東京']}, 'unknown': {'PSN': ['太郎', '山田'], 'LOC': ['東京駅', '東京スカイツリー']}}

Methods

method description
default_report(print_) return result of named entity recognition. if print_=True, showing result
known_only_report(print_) return result of known named entity recognition.
unknown_only_report(print_) return result of unknown named entity recognition.
return_predict_named_entities() return named entities along predicted label(predicts).
return_answer_named_entities() return named entities along answer label(answer).
return_miss_labelings() return miss labeling sentences.
segmentation_score(mode) show parcentages of matching answer and predict labels. if known or unknown for mode, return labeling accuracy for known or unknown NE.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mi-ner-0.5.1.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

mi_ner-0.5.1-cp37-cp37m-macosx_10_14_x86_64.whl (28.2 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file mi-ner-0.5.1.tar.gz.

File metadata

  • Download URL: mi-ner-0.5.1.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3

File hashes

Hashes for mi-ner-0.5.1.tar.gz
Algorithm Hash digest
SHA256 4cc781a44d9c6000ad63d6e02e473bd685e15ba112bd1e0477a2c15769d6b41b
MD5 818f688c785d1c1393105a26c58d66dc
BLAKE2b-256 004ce58a152acba23c9fc46a2c403ed880bfc011d5060de14395612fc0b7f031

See more details on using hashes here.

File details

Details for the file mi_ner-0.5.1-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: mi_ner-0.5.1-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 28.2 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3

File hashes

Hashes for mi_ner-0.5.1-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 73839b7cf1973bafe95d0239db21d346185a4f6a478b8ff38119c557ea495ace
MD5 f383f24aa4a746e4b0dd6debf5d246f1
BLAKE2b-256 666aec6eeed535c4025f506b08fa713274263e68df319598cb2c797e252fe2a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page