Skip to main content

Quantile normalization of microarray data.

Project description

Build Status

Coverage Status

Documentation

microarray-quantilenorm documentation

Description

This is an implementation of quantile normalization for microarray data analysis.

Usage

python quantile_normalization CSV

microarray-quantilenorm will then do the following:

  • Output a list of expression values for genes of interest in each sample to stdout.

  • Create a PDF and PNG file graphing the distribution for each sample both before and after normalization.

Restrictions

1.) Each CSV file must contain the same gene set.

2.) Each gene must be unique.

Example:

> ABCD1 5.675
> ABCD2 3.456
> ABCD3 5.432

Requirements

Matplotlib = 1.4.3

Scipy = 0.5.1

Installation

pip install microarray-quantilenorm

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

microarray_quantilenorm-0.1008.tar.gz (3.7 kB view details)

Uploaded Source

File details

Details for the file microarray_quantilenorm-0.1008.tar.gz.

File metadata

File hashes

Hashes for microarray_quantilenorm-0.1008.tar.gz
Algorithm Hash digest
SHA256 f052f290d947fb76a5d50bc1fdd2482d1aa51b84f02ca76dfd218c35377d7896
MD5 a2c589fea9a75d32f0aaec6e378fd93d
BLAKE2b-256 3f3b67d0bcba2398839affb7b7abebf4e3b50c0cea2fa3a7b38e63337d34ce61

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page