Skip to main content

Opinionated machine learning organization and configuration

Project description

microcosm-sagemaker

Opinionated machine learning with SageMaker

Usage

For best practices, see cookiecutter-microcosm-sagemaker.

Profiling

Make sure pyinstrument is installed, either using pip install pyinstrument or by installing microcosm-sagemaker with profiling extra dependencies:

pip install -e '.[profiling]'

To enable profiling of the app, use the --profile flag with runserver:

runserver --profile

The service will log that it is in profiling mode and announce the directory to which it is exporting. Each call to the endpoint will be profiled and its results with be stored in a time-tagged html file in the profiling directory.

Experiment Tracking

To use Weights and Biases, install microcosm-sagemaker with wandb extra depdency:

pip install -e '.[wandb]'

To enable experiment tracking in an ML repository:

  • Choose the experiment tracking stores for your ML model. Currently, we only support wandb. To do so, add wandb to graph.use() in app_hooks/train/app.py and app_hooks/evaluate/app.py.

  • Add the API key for wandb to the environment variables injected by Circle CI into the docker instance, by visiting https://circleci.com/gh/globality-corp/<MODEL-NAME>/edit#env-vars and adding WANDB_API_KEY as an environment variable.

  • Microcosm-sagemaker automatically adds the config for the active bundle and its dependents to the wandb's run config.

  • To report a static metric:

class MyClassifier(Bundle):
    ...

    def fit(self, input_data):
        ...
        self.experiment_metrics.log_static(<metric_name>=<metric_value>)
  • To report a time-series metric:
class MyClassifier(Bundle):
    ...

    def fit(self, input_data):
        ...
        self.experiment_metrics.log_timeseries(
            <metric_name>=<metric_value>,
            step=<step_number>
        )

Note that the step keyword argument must be provided for logging time-series.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

microcosm-sagemaker-0.2277.dev2277.tar.gz (24.9 kB view details)

Uploaded Source

File details

Details for the file microcosm-sagemaker-0.2277.dev2277.tar.gz.

File metadata

  • Download URL: microcosm-sagemaker-0.2277.dev2277.tar.gz
  • Upload date:
  • Size: 24.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.8.0 tqdm/4.45.0 CPython/3.7.7

File hashes

Hashes for microcosm-sagemaker-0.2277.dev2277.tar.gz
Algorithm Hash digest
SHA256 0959b55ecb540c28a1cb2a5abd2f22039fdf31851d7e3e5c4b7cc6b169c8910e
MD5 864c39c7abf7256f4d4548e80da34a52
BLAKE2b-256 0494d6ba10c00e21aef39e5e9bbd3d4d898210669bdde9caebe420a63b2c0985

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page