Skip to main content

Filtering noisy data

Project description

microfilter

Some ad-hoc approaches to filtering noisy data that don't appear in textbooks

Usage example

Train filter on simulated noisy data

from microfilter.univariate.expnormdist import ExpNormDist
from microfilter.univariate.noisysim import sim_lagged_values_and_times

lagged_values, lagged_times = sim_lagged_values_and_times
dist = ExpNormDist()
dist.hyper_params['max_evals']=500
dist.fit(lagged_values=lagged_values, lagged_times=lagged_times)
pprint(dist.params) 
new_value = 17.0
dist.update(value=new_value, dt=1.0)
pprint(dist.state) 

See https://github.com/microprediction/microfilter/blob/master/examples/plot_expnorm.py

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

microfilter-0.0.9.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

microfilter-0.0.9-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file microfilter-0.0.9.tar.gz.

File metadata

  • Download URL: microfilter-0.0.9.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for microfilter-0.0.9.tar.gz
Algorithm Hash digest
SHA256 0f04d3a2b238ed211d80679c2c7d1410146ef02590d2d068ff14380e4dcaed17
MD5 cb6a3dd445cd0f2f67a8d7794e8a2679
BLAKE2b-256 f2b0c12d717c38842cd87b05669ffada24caa2f575dc17c5919da6186578cec2

See more details on using hashes here.

File details

Details for the file microfilter-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: microfilter-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 9.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for microfilter-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 085d92e69aa8032b9cd96a08973a07679366fefc97ceb38304a69b540e65e437
MD5 15967562944badae128d2015431dabbb
BLAKE2b-256 ad2c5c34e2fa3c16fb4e0ed0c92acfc16708f8a3e833a6c3cfde3cf022cba4ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page