Skip to main content

A Python implementation of microkanren extended with constraints

Project description

microkanren

microkanren is an implementation of a miniKanren style relational programming language, embedded in Python. The solver is implemented in the style of μKanren[^1]. It provides a framework for extending the language with constraints, as well as a basic implementation of disequality and finite domain constraints, in the style of cKanren[^2].

Due to the differences between Python and the reference implementation languages (Scheme, Racket), some divergences from the typical miniKanren API are necessary. It is a goal to capture the spirit of the miniKanren language family, but not the exact API.

Installation

pip install microkanren

Usage

Basic usage

The basic goal constructor is eq. eq takes two terms as arguments, and returns a goal that will succeed if the terms can be unified, and fails otherwise.

>>> from microkanren import eq
>>> eq("🍕", "🍕")
<microkanren.core.Goal object at 0x7f07d85cced0>

To run a goal, use one of the provided interfaces: run, run_all, or irun. run takes two arguments:

  1. an integer, the maximum number of results to return; and
  2. a callable with positional-only arguments, each of which will receive a fresh logic variable.

run_all and irun take a single argument, the fresh-var-receiver.

>>> from microkanren import run
>>> run(1, lambda x: eq(x, "🍕"))
['🍕']

The return type of run and run_all is a (possibly-empty) list of results. If the list is empty, there are no solutions that satisfy the goal. irun returns a generator that yields single results.

>>> from microkanren import irun
>>> rs = irun(lambda x: eq(x, "😁"))
>>> next(rs)
'😁'
>>> next(rs)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

Conjunction and disjunction

Conjunction and disjunction are provided by the vararg conj and disj functions. Goal objects support combination using | and & operators, which map to conj and disj.

>>> from microkanren import run_all
>>> run_all(lambda x: disj(eq(x, "α"), eq(x, "β"), eq(x, "δ")))
['α', 'β', 'δ']
>>> run_all(lambda x: eq(x, "α") | eq(x, "β") | eq(x, "δ"))
['α', 'β', 'δ']
>>> run_all(lambda x: eq(x, "ω") & eq(x, "ω"))
['ω']
>>> run_all(lambda x: conj(eq(x, "ω"), eq(x, "ω")))
['ω']

The result type and multiple top-level variables

If the fresh-var-receiver provided to an interface has arity 1, results will be single elements. If it has arity > 1, the results will be a tuple of values, each mapping position-wise to the receiver's arguments.

>>> run_all(lambda x, y: eq(x, "foo") & eq(y, "bar") | eq(x, "hello") & eq(y, "world"))
[('foo', 'bar'), ('hello', 'world')]

Defining goal constructors

Calling goal constructors in your top-level program quickly becomes unwieldy. To mitigate this, you can define your own goal constructors.

A goal constructor is a function that takes zero or more arguments, and returns a Goal (or some object that implements the GoalProto).

A Goal is a callable that takes a State and returns a Stream of State objects.

A Stream is either:

  • empty (mzero);
  • a callable of no arguments that returns a Stream (a thunk); or
  • a tuple, (State, Stream).
>>> def likes_pizza(person, out):
...     return eq(out, (person, "likes 🍕"))
...
>>> run_all(lambda q: likes_pizza("Jane", q) | likes_pizza("Bill", q))
[('Jane', 'likes 🍕'), ('Bill', 'likes 🍕')]

As shown in the above example, it can be convenient to define goals in terms of the combination of other goals. However, if you require access to the current state, you can define the goal returned by your goal constructor explicitly.

def my_constructor(x):
    def _my_constructor(state):
        if there_is_something_about(x):
            return unit(state)
        return mzero

    return Goal(_my_constructor)

Wrapping your goal with Goal means it will be combinable with other goals using | and &.

Recursive goal constructors and snooze (Zzz)

If your goal constructor is directly recursive, it will never terminate.

>>> def always_pizza(x):
...     return eq(x, "🍕") | always_pizza(x)
...
>>> run(1, lambda x: always_pizza(x))
...
RecursionError: maximum recursion depth exceeded while calling a Python object

We provide snooze to delay the construction of a goal until it is needed. Using snooze we can fix always_pizza to return an infinite stream of pizza[^3].

>>> def always_pizza(x):
...     return eq(x, "🍕") | snooze(always_pizza, x)
...
>>> rs = irun(lambda x: always_pizza(x))
>>> next(rs)
'🍕'
>>> next(rs)
'🍕'
>>> next(rs)
'🍕'
>>> next(rs)
'🍕'

Developing microkanren

microkanren currently requires Python 3.11.

  1. git clone git@github.com:jams2/microkanren.git
  2. pip install -e .[dev,testing]

Run the tests with pytest.

Format code with black and ruff:

black .
ruff check --fix src tests

[^1]: μKanren: A Minimal Functional Core for Relational Programming (Hemann & Friedman, 2013) [^2]: cKanren: miniKanren with constraints (Alvis et al, 2011) [^3]: original example fives from the μKanren paper altered here to provide more pizza

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

microkanren-0.4.3.tar.gz (17.0 kB view details)

Uploaded Source

Built Distribution

microkanren-0.4.3-py3-none-any.whl (13.8 kB view details)

Uploaded Python 3

File details

Details for the file microkanren-0.4.3.tar.gz.

File metadata

  • Download URL: microkanren-0.4.3.tar.gz
  • Upload date:
  • Size: 17.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for microkanren-0.4.3.tar.gz
Algorithm Hash digest
SHA256 5406af1e8a669d54c058a95b6e82c96e37d8f667abe2049b12f36652114fb569
MD5 1d4b9e00bc56cda0c06f17467fbb3bfc
BLAKE2b-256 218e90d0331ff01f50ae69a71941eb15489661940741f4b1a513d81adf933d1a

See more details on using hashes here.

File details

Details for the file microkanren-0.4.3-py3-none-any.whl.

File metadata

  • Download URL: microkanren-0.4.3-py3-none-any.whl
  • Upload date:
  • Size: 13.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for microkanren-0.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e498ab5a2b9722f33ba0d767381e0fce642bb1b883e31cbdbd4fa40018ae09ed
MD5 3e48835fa2eb999b858b3b10e026709c
BLAKE2b-256 5037f9ef517f3656d7cd114698b26fbb1671c02867eef68bd79420487d1f514e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page