Skip to main content

Some Python nicieties

Project description

My little lib of Python goodies

Micropy is auto-formatted using yapf.

Nice things

dig()

CSS selector like deep value grabbing from almost any object.

>>> from micropy import dig
>>> dig.xget((1, 2, 3), 1)
2
>>> dig.xget({'foo': 'bar'}, 'foo')
'bar'
>>> dig.dig({'foo': 1, 'bar': [1,2,3]}, 'bar.1')
2
>>> dig.dig({'foo': 1, 'bar': [1,{'baz':'jox'},3]}, 'bar.1.baz')
'jox'
>>>

The difference between dig.dig() and funcy.get_in() is that you can use shell-like blob patterns to get several values keyed by similar names:

>>> from micropy import dig
>>> res = dig.dig({'foo': 1, 'foop': 2}, 'f*')
>>> res
[foo=1:int, foop=2:int]
>>> # (textual representation of an indexable object)
>>> res[0]
foo=1:int
>>> res[1]
foop=2:int
>>>

Programmatic class creation

Programmatic creation of arbitrary named classes in module definition, add methods using a decorator notation:

>>> from micropy import lang
>>> mystuff = (('Foo', 1), ('Bar', 2))
>>> for name, num in mystuff: locals()[name] = lang.mkclass(name, **{'num': num})
>>> Foo
<class 'micropy.lang.Foo'>
>>> Foo.num
1
>>> \
... @Foo.classmethod
... def myclassmethod(cls, x):
...     return x + 1
>>> Foo.myclassmethod(1)
2
>>>
>>> \
... @Foo.staticmethod
... def mystaticmethod(x, y):
...     return x + y
>>> Foo.mystaticmethod(1, 2)
3
>>> \
... @Foo.method
... def mymethod(self, x):
...     self.y = self.num + x
...     return self.y
>>> foo = Foo()
>>> foo.mymethod(1)
2
>>> foo.y
2
>>>

micropy module with developer convenience tools

The micropy.microscope module contains utilities that aid development. It has to ways to inspect live objects:

  1. Via ‘AbneuYAML’

    AbneuYAML is “Almost, but not entirely unlike YAML”. Objects dumped to ‘AbneuYAML’ should be easy to get a visual overview of for humans.

    To dump any object:

    >>> from micropy import microscope
    >>> class Cls: pass
    ...
    >>> c = Cls()
    >>> c.foo, c.bar = 1, 2
    >>> c.sub = Cls()
    >>> c.sub.foo, c.sub.bar, c.sub.baz = 3, 4, [1, 2]
    >>> encoded = microscope.abneuyaml(c)
    >>> print(encoded) #doctest: +ELLIPSIS
    <__main__.Cls object at 0x...>:Cls
      foo=1:int
      bar=2:int
      sub=<__main__.Cls object at 0x...>:Cls
        foo=3:int
        bar=4:int
        baz=[1, 2]:list
    >>>

A simple way of creating small DSL’s using Python operator overloading.

>>> from micropy import lang
>>> \
... class PipingExample(lang.Piping):
...     def __add__(self, value) -> lang.Piping:
...         self.queue(lambda a, b: a + b, value)
...         return self
...
>>> simplest_pipe = PipingExample(10)
>>> res = simplest_pipe + 10 + 20
>>> res()
40
>>>

Mostly, you’ll want to use the pipe operator to define simple composition:

>>> from micropy import lang
>>> incr = lambda x: x + 1
>>> showr = "It is {}!".format
>>> (lang.ComposePiping(5) >> incr >> incr >> showr)()
'It is 7!'
>>>

‘Call by type’ convenience objects

>>> from micropy import lang
>>> foo = lang.Match({int: lambda x: x*100, str: lambda x: f'Hello {x}'})
>>> foo(10)
1000
>>> foo('bar')
'Hello bar'
>>>

Narrowable collections

Uses indexes to narrow collections to fewer values. You can narrow by type, a predicate function or value equality. The return value is always a new Narrowable derived type from the initial value. Therefore, you can chain several narrowing operations in the same expression.

Errors raised by the narrowing predicates are considered misses.

Some examples:

Narrow by type

>>> from micropy.primitives import narrowable
>>> narrowable((1,2,3,'foo', 'bar'))[int]
(1, 2, 3)
>>>

Narrow by callable

>>> from micropy.primitives import narrowable
>>> narrowable((1, 2, 3))[lambda x: x > 1]
(2, 3)
>>>
>>> narrowable((1,2,3,'foo', 'bar'))[int]
(1, 2, 3)
>>> narrowable((1,2,3,'foo', 'bar'))[lambda x: x > 1]
(2, 3)
>>> # Note, swallows ValueError raised by 'foo' > 1 etc
>>>

Supress empty iterable objects

>>> from micropy.primitives import narrowable
>>> narrowable([[1], [2], [], []])[lambda x: x[0]]
[[1], [2]]
>>>

Narrow using exact match

>>> from micropy.primitives import narrowable
>>> narrowable((1, 2, 3, 'foo'))['foo']
('foo',)
>>>

Narrow using a regexp

>>> from micropy.primitives import narrowable
>>> import re
>>> narrowable(('foo', 'fom', 'jox', 8, 'fim'))[re.compile('fo.*').match]
('foo', 'fom')
>>>

Combine

>>> from micropy.primitives import narrowable
>>> narrowable((1,2,3,'foo', 'bar'))[str]['foo']
('foo',)
>>>

Go deeper

>>> from micropy.primitives import narrowable
>>> narrowable((1, 2, 3, (41, 42, 43)))[tuple][0][lambda x: x > 41]
(42, 43)
>>>

No matches found

If no element matches, an empty version of the collection parameter will be returned:

>>> from micropy.primitives import narrowable
>>> narrowable((1,2,3))[lambda x: x > 3]
()
>>>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

micropy-0.6.2.tar.gz (17.2 kB view details)

Uploaded Source

File details

Details for the file micropy-0.6.2.tar.gz.

File metadata

  • Download URL: micropy-0.6.2.tar.gz
  • Upload date:
  • Size: 17.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.3

File hashes

Hashes for micropy-0.6.2.tar.gz
Algorithm Hash digest
SHA256 635b49f6c6e05da0f877800fea4abb73163ece2f9b55b527946816a00d23f70e
MD5 8cf79b8c94e982ae2743f63341600567
BLAKE2b-256 a8b88679af2a5738e517905ff6e7ddc8b36eae34eea2bac37c989c0d90dc58f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page