Skip to main content

MIDI / symbolic music tokenizers for Deep Learning models.

Project description

MidiTok

Python package to tokenize music files, introduced at the ISMIR 2021 LBDs.

MidiTok Logo

PyPI version fury.io Python 3.8 Documentation Status GitHub CI Codecov GitHub license Downloads Code style

MidiTok can tokenize MIDI and abc files, i.e. convert them into sequences of tokens ready to be fed to models such as Transformer, for any generation, transcription or MIR task. MidiTok features most known music tokenizations (e.g. REMI, Compound Word...), and is built around the idea that they all share common parameters and methods. Tokenizers can be trained with Byte Pair Encoding (BPE), Unigram and WordPiece, and it offers data augmentation methods.

MidiTok is integrated with the Hugging Face Hub 🤗! Don't hesitate to share your models to the community!

Documentation: miditok.readthedocs.com

Install

pip install miditok

MidiTok uses Symusic to read and write MIDI and abc files, and BPE/Unigram is backed by Hugging Face 🤗tokenizers for superfast encoding.

Usage example

Tokenizing and detokenzing can be done by calling the tokenizer:

from miditok import REMI, TokenizerConfig
from symusic import Score

# Creating a multitrack tokenizer, read the doc to explore all the parameters
config = TokenizerConfig(num_velocities=16, use_chords=True, use_programs=True)
tokenizer = REMI(config)

# Loads a midi, converts to tokens, and back to a MIDI
midi = Score("path/to/your_midi.mid")
tokens = tokenizer(midi)  # calling the tokenizer will automatically detect MIDIs, paths and tokens
converted_back_midi = tokenizer(tokens)  # PyTorch, Tensorflow and Numpy tensors are supported

Here is a complete yet concise example of how you can use MidiTok to train any PyTorch model. And here is a simple notebook example showing how to use Hugging Face models to generate music, with MidiTok taking care of tokenizing music files.

from miditok import REMI, TokenizerConfig
from miditok.pytorch_data import DatasetMIDI, DataCollator
from miditok.utils import split_files_for_training
from torch.utils.data import DataLoader
from pathlib import Path

# Creating a multitrack tokenizer, read the doc to explore all the parameters
config = TokenizerConfig(num_velocities=16, use_chords=True, use_programs=True)
tokenizer = REMI(config)

# Train the tokenizer with Byte Pair Encoding (BPE)
files_paths = list(Path("path", "to", "midis").glob("**/*.mid"))
tokenizer.train(vocab_size=30000, files_paths=files_paths)
tokenizer.save(Path("path", "to", "save", "tokenizer.json"))
# And pushing it to the Hugging Face hub (you can download it back with .from_pretrained)
tokenizer.push_to_hub("username/model-name", private=True, token="your_hf_token")

# Split MIDIs into smaller chunks for training
dataset_chunks_dir = Path("path", "to", "midi_chunks")
split_files_for_training(
    files_paths=files_paths,
    tokenizer=tokenizer,
    save_dir=dataset_chunks_dir,
    max_seq_len=1024,
)

# Create a Dataset, a DataLoader and a collator to train a model
dataset = DatasetMIDI(
    files_paths=list(dataset_chunks_dir.glob("**/*.mid")),
    tokenizer=tokenizer,
    max_seq_len=1024,
    bos_token_id=tokenizer["BOS_None"],
    eos_token_id=tokenizer["EOS_None"],
)
collator = DataCollator(tokenizer.pad_token_id, copy_inputs_as_labels=True)
dataloader = DataLoader(dataset, batch_size=64, collate_fn=collator)

# Iterate over the dataloader to train a model
for batch in dataloader:
    print("Train your model on this batch...")

Tokenizations

MidiTok implements the tokenizations: (links to original papers)

You can find short presentations in the documentation.

Contributions

Contributions are gratefully welcomed, feel free to open an issue or send a PR if you want to add a tokenization or speed up the code. You can read the contribution guide for details.

Todos

  • Support music-xml files;
  • no_duration_drums option, discarding duration tokens for drum notes;
  • Control Change messages;
  • Speed-up global/track events parsing with Rust or C++ bindings.

Citation

If you use MidiTok for your research, a citation in your manuscript would be gladly appreciated. ❤️

[MidiTok paper] [MidiTok original ISMIR publication]

@inproceedings{miditok2021,
    title={{MidiTok}: A Python package for {MIDI} file tokenization},
    author={Fradet, Nathan and Briot, Jean-Pierre and Chhel, Fabien and El Fallah Seghrouchni, Amal and Gutowski, Nicolas},
    booktitle={Extended Abstracts for the Late-Breaking Demo Session of the 22nd International Society for Music Information Retrieval Conference},
    year={2021},
    url={https://archives.ismir.net/ismir2021/latebreaking/000005.pdf},
}

The BibTeX citations of all tokenizations can be found in the documentation

Acknowledgments

@Natooz thanks its employers who allowed him to develop this project, by chronological order Aubay, the LIP6 (Sorbonne University), and the Metacreation Lab (Simon Fraser University).

All Thanks To Our Contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

miditok-3.0.4.tar.gz (132.8 kB view details)

Uploaded Source

Built Distribution

miditok-3.0.4-py3-none-any.whl (157.2 kB view details)

Uploaded Python 3

File details

Details for the file miditok-3.0.4.tar.gz.

File metadata

  • Download URL: miditok-3.0.4.tar.gz
  • Upload date:
  • Size: 132.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for miditok-3.0.4.tar.gz
Algorithm Hash digest
SHA256 53fd681d982983b9457cc44c6741607bdd4cb1dc1bdd95170f867eedae8d6b9e
MD5 1809744b4f7c3a147f1b96043df34334
BLAKE2b-256 6a64d9246d97f35733bb1f5385d3763637779058e6df6916524207eb44759ccc

See more details on using hashes here.

File details

Details for the file miditok-3.0.4-py3-none-any.whl.

File metadata

  • Download URL: miditok-3.0.4-py3-none-any.whl
  • Upload date:
  • Size: 157.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for miditok-3.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 6cca795b9c8c5ae0c89f895293012d8867f3b9ee0928f9d4d77679999d13ef82
MD5 f2746ecaeb70f386bf502dcfbc6f0036
BLAKE2b-256 b20a255baafaee53421695db5d9dac4d20db7b747bf1a5b28d7cce86b26ce388

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page